Skip to main content
Log in

Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on polymer composites with embedded graphene flakes which exhibit a current–voltage characteristic of Josephson type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Antonowicz, Possible superconductivity at room temperature. Nature 247(5440), 358–360 (1974)

    Article  ADS  Google Scholar 

  2. P. Esquinazi, N. García, J. Barzola-Quiquia, P. Rödiger, K. Schindler, J.-L. Yao, M. Ziese, Indications for intrinsic superconductivity in highly oriented pyrolytic graph. Phys. Rev. B 78(1–8), 134516 (2008)

  3. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, A. Setzer, Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder. Adv. Mater. 24, 5826–5831 (2012)

    Article  Google Scholar 

  4. S.G. Lebedev, Evidence of Josephson-like behavior of thin granular carbon films. Int. Rev. Phys. 2, 312 (2008)

    Google Scholar 

  5. I. Felner, Y. Kopelevich, Magnetization measurement of a possible high-temperature superconducting state in amorphous carbon doped with sulfur. Phys. Rev. B 79(1–4), 233409 (2009)

    Article  ADS  Google Scholar 

  6. A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys. 15(15), 023024 (2013)

  7. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  8. H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in grapheme. Nature 446, 56–59 (2007)

    Article  ADS  Google Scholar 

  9. M. Xue, G. Chen, H. Yang, Y. Zhu, D. Wang, J. He, T. Cao, Superconductivity in potassium-doped few-layer graphene. J. Am. Chem. Soc. 134, 6536–6539 (2012)

    Article  Google Scholar 

  10. V.L. Ginzburg, Concerning surface superconductivity. Sov. Phys. JETP 20, 1549–1550 (1965)

    Google Scholar 

  11. W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1964)

    Article  ADS  Google Scholar 

  12. P. Esquinazi, T.T. Heikkilä, Y.V. Lysogorskiy, D.A. Tayurskii, G.E. Volovik, On the superconductivity of graphite interfaces. Pis’ma v ZhETF 100(5), 374–378 (2014)

    Google Scholar 

  13. N.B. Kopnin, T.T. Heikkilä, G.E. Volovik, High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83(1–4), 220503 (2011)

    Article  ADS  Google Scholar 

  14. T. Heikkilä, N.B. Kopnin, G. Volovik, JETP Lett. 94, 233–239 (2011)

    Article  ADS  Google Scholar 

  15. P. San-Jose et al., Phys. Rev. B 88, 121408 (2013)

    Article  ADS  Google Scholar 

  16. B. Uchoa, Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene. Phys. Rev. Lett. 111(1–5), 046604 (2013)

    Article  ADS  Google Scholar 

  17. A. Bianconi, T. Jarlborg, Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Nov. Supercond. Mater. 1, 37 (2015)

    Google Scholar 

  18. Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen, G.D. Li, J.N. Wang, C.T. Chan, P. Sheng, Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001)

    Article  ADS  Google Scholar 

  19. I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 96(1–4), 057001 (2006)

    Article  ADS  Google Scholar 

  20. A.N. Ionov, Tech. Phys. Lett. 41(7), 651–653 (2015)

    Article  ADS  Google Scholar 

  21. M.N. Nikolaeva, A.N. Bugrov, T.D. Anan’eva, A.T. Dideikin, Conductive properties of the composite films of graphene oxide based on polystyrene in a metal-polymer-metal structure. Russ. J. Appl. Chem. 87(8), 1151–1155 (2014)

    Article  Google Scholar 

  22. V.M. Mikoushkin, V.V. Shnitiv, S.Y. Nikonov, A.T. Dideykin, S.P. Vul’, A.Y. Vul’, D.A. Sakseev, D.V. Vyalikh, D.Y. Vilkov, GO bandgap dependence on the reduction temperature: Eg(T). Tech. Phys. Lett. 37(10), 942–945 (2011)

    Article  ADS  Google Scholar 

  23. M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, Y.J. Chabal, The role of intercalated water in multilayered graphene oxide. ACSNANO 4(10), 5861–5868 (2010)

    Google Scholar 

  24. S.M. Song, B.J. Cho, Contact resistance in graphene channel transistors. Carbon Lett. 14(3), 162–170 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses his gratitude to M.N.Nikolaeva for the opportunity to work with polymer composites and L.N.Ionov and V.M.Sarygina for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ionov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionov, A.N. Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene. J Low Temp Phys 185, 515–521 (2016). https://doi.org/10.1007/s10909-015-1459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1459-7

Keywords

Navigation