Skip to main content
Log in

Magnetic Quantum Tunneling in the Single-Molecule Magnet Mn12-Acetate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The symmetry of magnetic quantum tunneling (MQT) in the single molecule magnet Mn2-acetate has been determined by sensitive low-temperature magnetic measurements in the pure quantum tunneling regime and high frequency EPR spectroscopy in the presence of large transverse magnetic fields. The combined data set definitely establishes the transverse anisotropy terms responsible for the low temperature quantum dynamics. MQT is due to a disorder induced locally varying quadratic transverse anisotropy associated with rhombic distortions in the molecular environment (2nd order in the spin-operators). This is superimposed on a 4th order transverse magnetic anisotropy consistent with the global (average) S4 molecule site symmetry. These forms of the transverse anisotropy are incommensurate, leading to a complex interplay between local and global symmetries, the consequences of which are analyzed in detail. The resulting model explains: (1) the observation of a twofold symmetry of MQT as a function of the angle of the transverse magnetic field when a subset of molecules in a single crystal are studied; (2) the non-monotonic dependence of the tunneling probability on the magnitude of the transverse magnetic field, which is ascribed to an interference (Berry phase)effect; and (3) the angular dependence of EPR absorption peaks, including the fine structure in the peaks, among many other phenomena. This work also establishes the magnitude of the 2nd and 4th order transverse anisotropy terms for Mn12-acetate single crystals and the angle between the hard magnetic anisotropy axes of these terms. EPR as a function of the angle of the field with respect to the easy axes (close to the hard-medium plane) confirms that there are discrete tilts of the molecular magnetic easy axis from the global (average) easy axis of a crystal, also associated with solvent disorder. The latter observation provides a very plausible explanation for the lack of MQT selection rules, which has been a puzzle for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Hemmen L., Suto A., Europhys. Lett. 1, 481 (1986); L. van Hemmen and Suto A., Physica B141, 37 (1986); M. Enz and Schilling R., J. Phys. C19, 1765, L711 (1986); E. Chudnovsky and Gunther L., Phys. Rev. Lett. 60, 661 (1988)

  2. Tejada J., Chudnovsky EM., E. del Barco, and Hernandez JM., Nanotechnology 12, 181 (2001); Loss D., Leuenberger M., and DiVincenzo D., Nature 410, 789 (2000)

  3. JR. Friedman MP. Sarachik J. Tejada R. Ziolo (1996) Phys. Rev. Lett. 76 3830 Occurrence Handle10.1103/PhysRevLett.76.3830 Occurrence Handle10061120

    Article  PubMed  Google Scholar 

  4. J.M. Hernandez et al. (1996) Europhys. Lett. 35 301

    Google Scholar 

  5. L. Thomas F. Lionti R. Ballou D. Gatteschi R. Sessoli B. Barbara (1996) Nature (London). 383 145

    Google Scholar 

  6. C. Sangregorio T. Ohm C. Paulsen R. Sessoli D. Gatteschi (1997) Phys. Rev. Lett. 78 4645

    Google Scholar 

  7. AL. Barra D. Gatteschi R. Sessoli (1997) Phys. Rev. B. 56 8192

    Google Scholar 

  8. J.A.AJ. Perenboom JS. Brooks S. Hill T. Hathaway NS. Dalal (1998) Phys. Rev. B 58 330

    Google Scholar 

  9. K.M. Mertes et al. (2001) Phys. Rev. Lett. 87 227205 Occurrence Handle11736425

    PubMed  Google Scholar 

  10. JM. Hernandez F. Torres J. Tejada E. Molins (2002) Phys. Rev. B. 66 161407

    Google Scholar 

  11. Bokacheva L., Kent AD., Walters MA., Phys. Rev. Lett. 85, 4803 (2000); A. D. Kent et al., Europhys. Lett. 49, 521 (2000)

  12. I. Mirebeau et al. (1999) Phys. Rev. Lett. 83 628

    Google Scholar 

  13. S. Hill J.AA. Perenboom NS. Dalal T. Hathaway T. Stalcup JS. Brooks (1998) Phys. Rev. Lett. 80 2453

    Google Scholar 

  14. E.M. Chudnovsky DA. Garanin (2001) Phys. Rev. Lett. 87 187203

    Google Scholar 

  15. E.M. Chudnovsky DA. Garanin (2002) Phys. Rev. B. 65 094423

    Google Scholar 

  16. A. Cornia R. Sessoli L. Sorace D. Gatteschi AL. Barra (2002) Phys. Rev. Lett. 89 257201 Occurrence Handle12484911

    PubMed  Google Scholar 

  17. E. del Barco AD. Kent EM. Rumberger D.N. Hendrickson G. Christou (2002) Europhys. Lett. 60 768

    Google Scholar 

  18. E. del Barco AD. Kent EM. Rumberger D.N. Hendrickson G. Christou (2003) Phys. Rev. Lett. 91 047203 Occurrence Handle12906693

    PubMed  Google Scholar 

  19. S. Hill RS. Edwards SI. Jones NS. Dalal JM. North (2003) Phys. Rev. Lett. 90 217204 Occurrence Handle12786585

    PubMed  Google Scholar 

  20. K. Park et al. (2002) Phys. Rev. B. 65 014426

    Google Scholar 

  21. S. Hill et al. (2002) Phys. Rev. B. 65 224410

    Google Scholar 

  22. R. Amigo et al. (2001) Phys. Rev. B. 65 172403

    Google Scholar 

  23. S. Maccagnano R. Achey E. Negusse A. Lussier MM. Mola S. Hill NS. Dalal (2001) Polyhedron 20 1441

    Google Scholar 

  24. K. Park MA. Novotny NS. Dalal S. Hill PA. Rikvold (2002) J. Appl. Phys. 91 7167

    Google Scholar 

  25. B. Parks J. Loomis E. Rumberger DN. Hendrickson G. Christou (2001) Phys. Rev. B. 64 184426

    Google Scholar 

  26. A.A. Mukhin et al. (1998) Europhys. Lett. 44 778

    Google Scholar 

  27. S. Takahashi RS. Edwards JM. North S. Hill NS. Dalal (2004) Phys. Rev. B. 70 094429

    Google Scholar 

  28. E. del Barco AD. Kent N. Chakov G. Christou DN. Hendrickson (2004) Phys. Rev. B. 69 020411(R)

    Google Scholar 

  29. T. Lis (1980) Acta Crystallogr., Sect B: Struct. Crystallogr. Cryst. Chem. 36 2042

    Google Scholar 

  30. G. Christou et al. (2000) MRS Bull. 25 66

    Google Scholar 

  31. N. Regnault Jolicœur R. Sessoli D. Gatteschi M. Verdaguer (2002) Phys. Rev. B 66 054409

    Google Scholar 

  32. D. Garanin EM. Chudnovsky (1997) Phys. Rev. B. 57 11102

    Google Scholar 

  33. W. Wernsdorfer R. Sessoli (1999) Science 284 133 Occurrence Handle10102810

    PubMed  Google Scholar 

  34. C. Kirman J. Lawrence S. Hill E-C. Yang DN. Hendrickson (2005) J. Appl. Phys. 97 10M501

    Google Scholar 

  35. K. Park T. Baruah N. Bernstein MR. Pederson (2004) Phys. Rev. B. 69 144426

    Google Scholar 

  36. D. Loss D.P. DiVincenzo G. Grinstein (1992) Phys, Rev. Lett. 69 3232

    Google Scholar 

  37. A. Garg (1993) Europhys. Lett. 22 205

    Google Scholar 

  38. W. Wernsdorfer M. Soler G. Christou DN. Hendrickson (2002) J. Appl. Phys. 29 7164

    Google Scholar 

  39. MR. Pederson J. Kortus SN. Khanna (2002) J. Appl. Phys. 91 7149

    Google Scholar 

  40. C.S. Park A. Garg (2002) Phys. Rev. B. 65 064411

    Google Scholar 

  41. d-Mn12-acetate was synthesized by following the standard procedure for preparing h-Mn12- acetate, but using D2O and deuterated acetic, CD3COOD

  42. AD. Kent S. Molnar Particlevon S. Gider DD. Awschalom (1994) J. Appl. Phys. 76 6656

    Google Scholar 

  43. Zener C., Proc. R. Soc. London A 137, 696 (1932); Miyashita S., J. Phys. Soc. Jpn. 64, 3207 (1995); V. V. Dobrovitski and Zvezdin AK., Europhys. Lett. 38, 377 (1997); L. Gunther ibid. 39, 1 (1997); G. Rose and P. Stamp CE., J. Low Temp. Phys. 113, 1153 (1998)

  44. In the result presented in Ref. 18 the one-fold contribution of this measurement was displaced by 180 degrees. This corresponds to a mistake that was due to the fact that for this experiment we took \(\phi = -180^{\circ}\) (that corresponds to negative orientation of one of the coils of the superconducting vector magnet) as the origin of rotation while for all the others the origin was \(\phi = 0\) (positive orientation of the same coil) and we did not correct it in the data

  45. We studied the behavior of the MQT probability with a transverse field applied along the directions of a maximum and a minimum of the twofold MQT probability response because our initial interpretation of the results in Ref. 18 neglected the effect of incommensurate transverse anisotropies and we assumed that those were the directions of the hard and the medium anisotropy axes associated with E( \(S_{x}^{2} - S_{y}^{2}\)). As we explain in this article, these directions, in fact, correspond to medium anisotropy axes of the fourth order anisotropy term and none of them are along the hard anisotropy axes of the second order anisotropy term

  46. Mola M., Hill S., Goy P., and Gross M., Rev. Sci. Inst. 71, 186 (2000)

  47. S. Hill et al., Polyhedron (in press, 2005)

  48. The \({\hat O}^{0}_{4}\) Stevens operator has the form \(35{\hat S}^{4}_{z} + [25 - 30S(S + 1)] {\hat S}^{2}_{z}\). Thus, a finite \(B^{0}_{4}\) term results in an additional quadratic contribution to the anisotropy barrier. Consequently, the axial crystal field parameters D (Eq. 1) and D′ (Eq. 21) are inequivalent in situations where B (and, therefore, \(B^{0}_{4}\)) are finite; B and \(B^{0}_{4}\) are inequivalent also. D and D′, as well as B and \(B^{0}_{4}\), also have opposite signs. The appropriate transformation between the two parameter sets are as follows: \(D = (3275 \times B^{0}_{4}) - D^{\prime}\) and \(B = -35 \times B^{0}_{4}\)

  49. MR. Pederson N. Bernstein J. Kortus (2002) Phys. Rev. Lett. 89 097202 Occurrence Handle12190432

    PubMed  Google Scholar 

  50. S. Takahashi S. Hill (2005) Rev. Sci. Inst. 76 023114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barco, E.d., Kent, A.D., Hill, S. et al. Magnetic Quantum Tunneling in the Single-Molecule Magnet Mn12-Acetate. J Low Temp Phys 140, 119–174 (2005). https://doi.org/10.1007/s10909-005-6016-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-6016-3

Keywords

Navigation