Skip to main content
Log in

Crystal Structures and Effect of Temperature on the Luminescence of Two Lanthanide Coordination Polymers with Twofold Interpenetrating pcu Topology

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two new lanthanide coordination polymers formulated as [Ln(BDC)1.5(DMF)(H2O)] n [Ln = Tb (1), Gd (2)] [H2BDC = 1,4-benzenedicarboxylic acid, DMF = N,N′-dimethylformamide] were synthesized under solvothermal conditions. The coordination polymers were characterized by IR spectroscopy, elemental analysis and X-ray single-crystal diffraction. The two coordination polymers are isostructural and exhibit twofold interpenetrating pcu three-dimensional open frameworks constructed by tetradentate ligand of H2BDC. The fluorescence properties of 1 and 2 were investigated at 298 or 77 K both in solid state and in CH2Cl2 solvent dispersed as suspensions. Coordination polymer 1 exhibits characteristic Tb3+ ions emission transitions of 5D4 → 7F J (J = 6–2) at 77 or 298 K both in the solid-state and in CH2Cl2 solvent. Moreover, the vibrational structure of 1 is more defined at 77 K, which exhibits another two 5D4 → 7F1 and 5D4 → 7F2 transitions more than that at 298 K. The lifetimes of 1 are longer at 77 K (915.2 μs in the solid state and 874.11 μs in the CH2Cl2 solvent) than that at 298 K (866.31 μs in the solid state and 801.04 μs in the CH2Cl2 solvent), which may be caused by the increase of radiative rate and decrease of non-radiative rate at low temperature. The singlet excited state (28,653 cm−1) and the lowest triplet energy level (23,641 cm−1) of H2BDC ligand were calculated based on the UV–Vis absorbance edges of ligand and the phosphorescence spectrum of Gd3+ coordination polymer (2) at 77 K, showing that the effective extent of energy transfer from H2BDC ligand to Tb3+ ion. Finally, thermal behaviors of the two coordination polymers were studied by thermogravimetric analysis, which exhibit thermal stability to 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Science 319, 939 (2008)

    Article  CAS  Google Scholar 

  2. J.Z. Gu, W.G. Lu, L. Jiang, H.C. Zhou, T.B. Lu, Inorg. Chem. 46, 5835 (2007)

    Article  CAS  Google Scholar 

  3. Y. Yang, P.F. Yan, P. Gao, T. Gao, G.F. Hou, G.M. Li, J. Inorg. Organomet. Polym. 23, 1211 (2013)

    Article  CAS  Google Scholar 

  4. D.N. Dybtsev, A.L. Nuzhdin, H. Chun, K.P. Bryliakov, E.P. Talsi, V.P. Fedin, K. Kim, Angew. Chem. Int. Ed. 45, 916 (2006)

    Article  CAS  Google Scholar 

  5. G.F. Cui, Z.Q. Ye, R. Zhang, G.L. Wang, J.L. Yuan, J. Fluoresc. 22, 261 (2012)

    Article  CAS  Google Scholar 

  6. I.A. Ibarra, T.W. Hesterberg, B.J. Holliday, V.M. Lynch, S.M. Humphrey, Dalton Trans. 41, 8003 (2012)

    Article  CAS  Google Scholar 

  7. W.L. Zhou, Y. Xu, L.J. Han, D.R. Zhu, Dalton Trans. 39, 3681 (2010)

    Article  CAS  Google Scholar 

  8. D.B.A. Raj, S. Biju, M.L.P. Reddy, J. Mater. Chem. 19, 7976 (2009)

    Article  Google Scholar 

  9. T.V. Balashova, A.P. Pushkarev, V.A. Ilichev, M.A. Lopatin, M.A. Katkova, E.V. Baranov, G.K. Fukin, M.N. Bochkarev, Polyhedron 50, 112 (2013)

    Article  CAS  Google Scholar 

  10. X. Ma, X. Li, Y.E. Cha, L.P. Jin, Cryst. Growth Des. 12, 5227 (2012)

    Article  CAS  Google Scholar 

  11. J.Y. Wu, T.T. Yeh, Y.S. Wen, J. Twu, K.L. Lu, Cryst. Growth Des. 6, 467 (2006)

    Article  CAS  Google Scholar 

  12. A. Nag, P.J. Schmidt, W. Schnick, Chem. Mater. 18, 5738 (2008)

    Article  Google Scholar 

  13. G. Mancino, A.J. Ferguson, A. Beeby, N.J. Long, T.S. Jones, J. Am. Chem. Soc. 127, 524 (2005)

    Article  CAS  Google Scholar 

  14. N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)

    Article  CAS  Google Scholar 

  15. S.I. Klink, G.A. Hebbink, L. Grave, F.C.J.M. Van Veggel, D.N. Reinhoudt, J. Appl. Phys. 86, 1181 (1999)

    Article  CAS  Google Scholar 

  16. C.J. Höller, P.R. Matthes, M. Adlung, C. Wickleder, K. Müller-Buschbaum, Eur. J. Inorg. Chem. 51, 5479 (2012)

    Article  Google Scholar 

  17. A.R. Ramya, M.L.P. Reddy, A.H. Cowley, K.V. Vasudevan, Inorg. Chem. 49, 2407 (2010)

    Article  CAS  Google Scholar 

  18. M.V. Lucky, S. Sivakumar, M.L.P. Reddy, A.K. Paul, S. Nataraian, Cryst. Growth Des. 11, 857 (2011)

    Article  CAS  Google Scholar 

  19. X.D. Guo, G.S. Zhu, Q.R. Fang, M. Xue, G. Tian, J.Y. Sun, X.T. Li, S.L. Qiu, Inorg. Chem. 44, 3850 (2005)

    Article  CAS  Google Scholar 

  20. H.J. Zhang, R.Q. Fan, W. Chen, X.B. Zheng, K. Li, P. Wang, Y.L. Yang, J. Lumin. 143, 611 (2013)

    Article  CAS  Google Scholar 

  21. Z.Y. Li, J.W. Dai, N. Wang, H.H. Qiu, S.T. Yue, Y.L. Liu, Cryst. Growth Des. 10, 2746 (2010)

    Article  CAS  Google Scholar 

  22. J.J. Zhang, L. Wojtas, R.W. Larsen, M. Eddaoudi, M.J. Zaworotko, J. Am. Chem. Soc. 131, 17040 (2009)

    Article  CAS  Google Scholar 

  23. H.B. Zhang, L.J. Zhou, J. Wei, Z.H. Li, P. Lin, S.W. Du, J. Mater. Chem. 22, 21210 (2012)

    Article  CAS  Google Scholar 

  24. X.Y. Yi, H.C. Fang, Z.G. Gu, Z.Y. Zhou, Y.P. Cai, J. Tian, P.K. Thallapally, Cryst. Growth Des. 11, 2824 (2011)

    Article  CAS  Google Scholar 

  25. T.K. Maji, G. Mostafa, H.C. Chang, S. Kitagawa, Chem. Commun. 2436 (2005)

  26. T.M. Reineke, M. Eddaoudi, D. Moler, M. O’Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 122, 4843 (2000)

    Article  CAS  Google Scholar 

  27. B.L. Chen, Y. Yang, F. Zapata, G.D. Qian, Y.S. Luo, J.H. Zhang, E.B. Lobkovsky, Inorg. Chem. 45, 8882 (2006)

    Article  CAS  Google Scholar 

  28. Shelxtl N.T. Crystal structure analysis package, version 5.10, Bruker AXS, Analytical X-ray System, Madison, WI. (1999)

  29. S. Chen, R.Q. Fan, C.F. Sun, P. Wang, Y.L. Yang, Q. Su, Y. Mu, Cryst. Growth Des. 12, 1337 (2012)

    Article  CAS  Google Scholar 

  30. J. Xia, B. Zhao, H.S. Wang, W. Shi, Y. Ma, H.B. Song, P. Cheng, D.Z. Liao, S.P. Yan, Inorg. Chem. 46, 3450 (2007)

    Article  CAS  Google Scholar 

  31. Z.B. Han, Y.J. Song, J.W. Ji, W. Zhang, G.X. Han, J. Solid State Chem. 182, 3067 (2009)

    Article  CAS  Google Scholar 

  32. L.Y. Wang, R.Q. Fan, P. Wang, Y.L. Yang, Inorg. Chem. Commu. 23, 54 (2012)

    Article  Google Scholar 

  33. A.Q. Zhang, J.L. Zhang, Q.L. Pan, S.H. Wang, H.S. Jia, B.S. Xu, J. Lumin. 132, 965 (2012)

    Article  CAS  Google Scholar 

  34. Y.F. Han, X.Y. Li, L.Q. Li, C.L. Ma, Z. Shen, Y. Song, X.Z. You, Inorg. Chem. 49, 10781 (2010)

    Article  CAS  Google Scholar 

  35. H.Y. He, D.Q. Yuan, H.Q. Ma, D.F. Sun, G.Q. Zhang, H.C. Zhou, Inorg. Chem. 49, 7605 (2010)

    Article  CAS  Google Scholar 

  36. Z.H. Zhang, S.Y. Wan, T.A. Okamura, W.Y. Sun, N. Ueyama, Z. Anorg, Allg. Chem. 632, 679 (2006)

    Article  CAS  Google Scholar 

  37. S.Q. Su, W. Chen, C. Qin, S.Y. Song, Z.Y. Guo, G.H. Li, X.Z. Song, M. Zhu, S. Wang, Z.M. Hao, H.J. Zhang, Cryst. Growth Des. 12, 1808 (2012)

    Article  CAS  Google Scholar 

  38. X. Feng, J.G. Wang, B. Liu, L.Y. Wang, J.S. Zhao, S.W. Ng, Cryst. Growth Des. 12, 927 (2012)

    Article  CAS  Google Scholar 

  39. Q. Wang, J.Y. Zhang, C.F. Zhuang, Y. Tang, C.Y. Su, Inorg. Chem. 48, 287 (2009)

    Article  Google Scholar 

  40. R. Feng, L. Chen, Q.H. Chen, X.C. Shan, Y.L. Gai, F.L. Jiang, M.C. Hong, Cryst. Growth Des. 11, 1705 (2011)

    Article  CAS  Google Scholar 

  41. J. Claude, G. Bünzli, Chem. Rev. 110, 2729 (2010)

    Article  Google Scholar 

  42. J.D. Xu, T.M. Corneillie, E.G. Moore, G.L. Law, N.G. Butlin, K.N. Raymond, J. Am. Chem. Soc. 133, 19900 (2011)

    Article  CAS  Google Scholar 

  43. E.G. Moore, G. Szigethy, J.D. Xu, L.O. Pålsson, A. Beeby, K.N. Raymond, Angew. Chem. Int. Ed. 47, 9500 (2008)

    Article  CAS  Google Scholar 

  44. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715 (2000)

    Article  Google Scholar 

  45. P. Wang, R.Q. Fan, Y.L. Yang, X.R. Liu, P. Xiao, X.Y. Li, W.L.J. Hasi, W.W. Cao, CrystEngComm 15, 4489 (2013)

    Article  CAS  Google Scholar 

  46. J. Gregoliński, P. Starynowicz, K.T. Hua, J.L. Lunkley, G. Muller, J. Lisowski, J. Am. Chem. Soc. 130, 17761 (2008)

    Article  Google Scholar 

  47. M. Latva, H. Takalo, V.M. Mukkala, C. Matachescu, J.C. Rodríguez-Ubis, J. Kankare, J. Lumin. 75, 149 (1997)

    Article  CAS  Google Scholar 

  48. Z. Amghouz, S. García-Granda, J.R. García, A. Clearfield, R. Valiente, Cryst. Growth Des. 11, 5289 (2011)

    Article  CAS  Google Scholar 

  49. Z. Amghouz, L. Roces, S. García-Granda, J.R. García, Inorg. Chem. 49, 7919 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21371040 and 21171044), the National key Basic Research Program of China (973 Program, No. 2013CB632900), and supported by Program for Innovation Research of Science in Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qing Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HJ., Fan, RQ., Wang, P. et al. Crystal Structures and Effect of Temperature on the Luminescence of Two Lanthanide Coordination Polymers with Twofold Interpenetrating pcu Topology. J Inorg Organomet Polym 24, 624–632 (2014). https://doi.org/10.1007/s10904-014-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0025-0

Keywords

Navigation