Skip to main content
Log in

A novel clustering approach and prediction of optimal number of clusters: global optimum search with enhanced positioning

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Cluster analysis of genome-wide expression data from DNA microarray hybridization studies is a useful tool for identifying biologically relevant gene groupings (DeRisi et al. 1997; Weiler et al. 1997). It is hence important to apply a rigorous yet intuitive clustering algorithm to uncover these genomic relationships. In this study, we describe a novel clustering algorithm framework based on a variant of the Generalized Benders Decomposition, denoted as the Global Optimum Search (Floudas et al. 1989; Floudas 1995), which includes a procedure to determine the optimal number of clusters to be used. The approach involves a pre-clustering of data points to define an initial number of clusters and the iterative solution of a Linear Programming problem (the primal problem) and a Mixed-Integer Linear Programming problem (the master problem), that are derived from a Mixed Integer Nonlinear Programming problem formulation. Badly placed data points are removed to form new clusters, thus ensuring tight groupings amongst the data points and incrementing the number of clusters until the optimum number is reached. We apply the proposed clustering algorithm to experimental DNA microarray data centered on the Ras signaling pathway in the yeast Saccharomyces cerevisiae and compare the results to that obtained with some commonly used clustering algorithms. Our algorithm compares favorably against these algorithms in the aspects of intra-cluster similarity and inter-cluster dissimilarity, often considered two key tenets of clustering. Furthermore, our algorithm can predict the optimal number of clusters, and the biological coherence of the predicted clusters is analyzed through gene ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams W.P. and Sherali H.D. (1990). Linearization strategies for a class of zero-one mixed integer programming problems. Operat. Res. 38(2): 217–226

    Google Scholar 

  • Aggarwal A. and Floudas C.A. (1990). Synthesis of general separation sequences - nonsharp separations. Comput. Chem. Eng 14: 631–653

    Article  Google Scholar 

  • Beer M. and Tavazoie S. (2004). Predicting gene expression from sequence. Cell 117: 185–198

    Article  Google Scholar 

  • Bezdek J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York

    Google Scholar 

  • Brooke A., Kendrick D. and Meeraus A. (1988). GAMS: A User’s Guide. The Scientific Press, San Francisco, CA

    Google Scholar 

  • Carpenter G. and Grossberg S. (1990). ART3: hierarchical search using chemical transmitters in self-organizing patterns recognition architectures. Neural Networks 3: 129–152

    Article  Google Scholar 

  • Ciric A.R. and Floudas C.A. (1989). A retrofit approach of heat exchanger networks. Comput. Chem. Eng 13: 703–715

    Article  Google Scholar 

  • Claverie J. (1999). Computational methods for the identification of differential and coordinated gene expression. Human Mol. Genet. 8: 1821–1832

    Article  Google Scholar 

  • Davis D.L. and Bouldin D.W. (1979). A cluster separation measure. IEEE Trans. Pattern Anal. Machine Intell. 1(4): 224–227

    Google Scholar 

  • Dempster A.P., Laird N.M. and Rudin D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B. 39(1): 1–38

    Google Scholar 

  • DeRisi J.L., Iyer V.R. and Brown P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686

    Article  Google Scholar 

  • Dhillon, I.S., Guan, Y.: Information theoretic clustering of sparse co-occurrence data. Proceedings of the Third IEEE International Conference on Data Mining (ICDM) (2003)

  • Dunn J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3: 32–57

    Google Scholar 

  • Dunn J.C. (1974). Well separated clusters and optimal fuzzy partitions. J. Cybernet. 4: 95–104

    Google Scholar 

  • Duran M.A. and Odell P.L. (1974). Cluster Analysis: A Survey. Springer Verlag, New York

    Google Scholar 

  • Eisen M.B., Spellman P.T., Brown P.O. and Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. U.S.A. 95(25): 14863–14868

    Article  Google Scholar 

  • Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A. and Kallrath J. (2005). Global optimization in the 21st Century: advances and challenges. Comput. Chem. Eng. 29: 1185–2002

    Article  Google Scholar 

  • Floudas, C.A. Deterministic Global Optimization: Theory, Algorithms, and Applications. Kluwer Academic Publishers (2000)

  • Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press (1995)

  • Floudas C.A., Aggarwal A. and Ciric A.R. (1989). Global optimum search for non convex NLP and MINLP problems. Comp. Chem. Eng. 13(10): 1117–1132

    Article  Google Scholar 

  • Floudas C.A. and Anastasiadis S.H. (1988). Synthesis of general distillation sequences with several multicomponent feeds and products. Chem. Eng. Sci. 43: 2407–2419

    Article  Google Scholar 

  • Floudas C.A. and Grossmann I.E. (1987). Synthesis of flexible heat exchanger networks with uncertain flow rates and temperatures. Comput. Chem. Eng 11: 319–336

    Article  Google Scholar 

  • Geoffrion A.M. (1973). Generalized benders decomposition. J. Optim. Theory Appl. 10(4): 237

    Article  Google Scholar 

  • Goodman L. and Kruskal W. (1954). Measures of associations for cross-validations. J. Am. Stat. Assoc. 49: 732–764

    Article  Google Scholar 

  • Gower J.C. and Ross G.J.S. (1969). Minimum spanning trees and single-linkage cluster analysis. Appl. Stat. 18: 54–64

    Article  Google Scholar 

  • Halkidi M., Batistakis Y. and Vazirgiannis M. (2002). Cluster validity methods: Part 1. SIGMOD record 31(2): 40–45

    Article  Google Scholar 

  • Hansen P. and Jaumard B. (1997). Cluster analysis and mathematical programming. Math. Program. 79: 191–215

    Google Scholar 

  • Hartigan J.A. (1975). Clustering Algorithms. John Wiley & Sons, New York

    Google Scholar 

  • Hartigan J.A. and Wong M.A. (1979). Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. J. Roy. St. C. 28: 100–108

    Google Scholar 

  • Herrero J., Valencia A. and Dopazo J. (2001). A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2): 126–136

    Article  Google Scholar 

  • Heyer L.J., Kruglyak S. and Yooseph S. (1999). Exploring expression data: identification and analysis of co-expressed genes. Genome Res. 9: 1106–1115

    Article  Google Scholar 

  • Hubert L. and Schultz J. (1976). Quadratic assignment as a general data-analysis strategy. Br. J. Math. Stat. Psychol. 29: 190–241

    Google Scholar 

  • Jaccard P. (1912). The distribution of flora in the alpine zone. New Phytol. 11: 37–50

    Article  Google Scholar 

  • Jain A.K., Murty M.N. and Flynn P.J. (1999). Data clustering: a review. ACM Comput. Surv. 31(3): 264–323

    Article  Google Scholar 

  • Jain A.K. and Dubes R.C. (1988). Algorithms for Clustering Data. Prentice-Hall Advanced Reference Series, Prentice-Hall, Inc., Englewood Cliffs, New Jersey

    Google Scholar 

  • Johnson, R.E.: The role of cluster analysis in assessing comparability under the US transfer pricing regulations. Business Economics (April 2001)

  • Jung Y., Park H., Du D. and Drake B.L. (2003). A decision criterion for the optimal number of clusters in hierarchical clustering. J. Global Optimiz. 25: 91–111

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C.D. and Vecchi M.P. (1983). Optimization by simulated annealing. Science 220(4598): 671–680

    Article  Google Scholar 

  • Kohonen T. (1984). Self Organization and Associative Memory. Springer Information Science Series, Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Kohonen T. (1997). Self-Organizing Maps. Springer Verlag, Berlin

    Google Scholar 

  • Kokossis A.C. and Floudas C.A. (1994). Optimization of complex reactor networks - II. Nonisothermal operation.. Chem. Eng. Sci 49: 1037–1051

    Article  Google Scholar 

  • Leisch, F., Weingessel, A., Dimitriadou, E.: Competitive learning for binary valued data. In: Niklasson L., Bod’en M., Ziemke T. (eds.) Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98), vol. 2, pp. 779–784. Sk"ovde, Sweden, Springer (1998)

  • Likas A., Vlassis N. and Vebeek J.L. (2003). The global K-means clustering algorithm. Pattern Recogn. 36: 451–461

    Article  Google Scholar 

  • Lin X., Floudas C., Wang Y. and Broach J.R. (2003). Theoretical and computational studies of the glucose signaling pathways in yeast using global gene expression data. Biotechnol. Bioeng. 84(7): 864–886

    Article  Google Scholar 

  • Lukashin A.V. and Fuchs R. (2001). Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17(5): 405–414

    Article  Google Scholar 

  • McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

  • Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E.J. (1953). Equations of State calculations by fast computing machines. J. Chem. Phys. 21: 1087–1091

    Article  Google Scholar 

  • Paules G.E. IV. and Floudas C.A. (1989). APROS: Algorithmic development methodology for discrete-continuous optimization problems. Oper. Res. J. 37: 902–915

    Article  Google Scholar 

  • Pauwels E.J. and Frederix G. (1999). Finding salient regions in images: non-parametric clustering for image segmentation and grouping. Comput. Vision Image Understand. 75: 73–85

    Article  Google Scholar 

  • Pipenbacher P., Schliep A., Schneckener S., Schonhuth A., Schomburg D. and Schrader R. (2002). ProClust: improved clustering of protein sequences with an extended graph-based approach. Bioinformatics 18(Suppl 2): S182–S191

    Google Scholar 

  • Rand W.M. (1971). Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336): 846–850

    Article  Google Scholar 

  • Rousseeuw P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comp. App. Math 20: 53–65

    Article  Google Scholar 

  • Ruspini E.H. (1969). A new approach to clustering. Inf. Control 15: 22–32

    Article  Google Scholar 

  • Schneper L., Düvel K. and Broach J.R. (2004). Sense and sensibility: nutritional response and signal integration in yeast. Curr. Opin. Microbiol. 7(6): 624–630

    Article  Google Scholar 

  • Sherali H.D. and Desai J. (2005a). A global optimization RLT-based approach for solving the hard clustering problem. J. Global Optimiz. 32(2): 281–306

    Article  Google Scholar 

  • Sherali H.D. and Desai J. (2005b). A global optimization RLT-based approach for solving the fuzzy clustering approach. J. Global Optimiz. 33(4): 597–615

    Article  Google Scholar 

  • Slonim N., Atwal G.S., Tkačik G. and Bialek W. (2005). Information based clustering. Proc. Nat. Acad. Sci. U.S.A. 102(51): 18297–18302

    Article  Google Scholar 

  • Sokal R.R. and Michener C.D. (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409–1438

    Google Scholar 

  • Sorlie T., Tibshirani R., Parker J., Hastie T., Marron J.S., Nobel A., Deng S., Johnsen H., Pesich R., Geisler S., Demeter J., Perou C.M., Lonning P.E., Brown P.O., Borresen-Dala A.L. and Botstein D. (2003). Repeated observations of breast tumor subtypes in independent gene expression data sets. Proc. Nat. Acad. Sci. U.S.A. 100: 8418–8423

    Article  Google Scholar 

  • Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method; proceedings of the 37th annual allerton conference on communication. Control Comput. 368–377 (1999)

  • Troyanskaya O.G., Dolinski K., Owen A.B., Altman R.B. and Botstein D. (2003). A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Nat. Acad. Sci. U.S.A. 100: 8348–8353

    Article  Google Scholar 

  • Wang Y., Pierce M., Schneper L., Guldal C.G., Zhang X., Tavazoie S. and Broach J.R. (2004). Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. Plos Biol. 2(5): 610–622

    Article  Google Scholar 

  • Weiler J., Gausepohl H., Hauser N., Jensen O.N. and Hoheisel J.D. (1997). Hybridization-based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nuclei Acids Res. 25: 2792–2799

    Article  Google Scholar 

  • Wu Z. and Leahy R. (1993). An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Recogn. Mach. Intell. 15(11): 1101–1113

    Article  Google Scholar 

  • Xu R. and Wunsch D. (2005). Survey of clustering algorithms. IEEE Trans. Neural Networks 16(3): 645–678

    Article  Google Scholar 

  • Zahn C.T. (1971). Graph theoretical methods for detecting and describing gestalt systems. IEEE Trans. Comput. C-  20: 68–86

    Article  Google Scholar 

  • Zhang, B., Hsu, M., Dayal, U.: K-Harmonic Means – A Data Clustering Algorithm. Hewlett-Packard Research Laboratory Technical Report (June 1999)

  • Zhang, B.: Generalized K-Harmonic Means: Boosting in Unsupervised Learning. Hewlett-Packard Research Laboratory Technical Report (October 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M.P., Broach, J.R. & Floudas, C.A. A novel clustering approach and prediction of optimal number of clusters: global optimum search with enhanced positioning. J Glob Optim 39, 323–346 (2007). https://doi.org/10.1007/s10898-007-9140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9140-6

Keywords

Navigation