Skip to main content

Advertisement

Log in

Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence probes serves as unique detection methods for its simplicity and low detection limit (LOD) and especially bioimaging ability. Research on the probes has already sprouted during the last decade with the help of its molecular recognition properties. This review spotlights recent progress in sensing and bioimaging biologically, environmentally and industrially important metal ions e.g. Zn2+, Cu2+, Hg2+, Ag+ etc. using suitable fluorescent chemosensors including carbon quantum dots (CQD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chem 63:1247–1250

    Article  Google Scholar 

  2. Czarnik AW (1993) Fluorescent chemosensors for ion and molecule recognition, vol 538. American Chemical Society, Washington, DC, p 252

    Google Scholar 

  3. Janata J (2009) Introduction to sensors. In: Principles of Chemical Sensors. Springer, Boston, pp 1–11

    Chapter  Google Scholar 

  4. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  PubMed  CAS  Google Scholar 

  5. New EJ (2016) Harnessing the potential of small molecule intracellular fluorescent sensors. ACS Sensors 1:328–333

    Article  CAS  Google Scholar 

  6. Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 6:21624–21661

    Article  CAS  Google Scholar 

  7. Chang CJ, Gunnlaugsson T, James TD (2015) Imaging agents. Chem Soc Rev 44:4484–4486

    Article  PubMed  CAS  Google Scholar 

  8. Chang CJ, Gunnlaugsson T, James TD (2015) Sensor targets. Chem Soc Rev 44:4176–4178

    Article  PubMed  CAS  Google Scholar 

  9. Li C, Shi G (2014) Carbon nanotube-based fluorescence sensors. J Photochem Photobiol C 19:20–34

    Article  CAS  Google Scholar 

  10. Ma DL, Ma VPY, Chan DSH, Leung KH, He HZ, Leung CH (2012) Recent advances in luminescent heavy metal complexes for sensing. Coord Chem Rev 256:3087–3113

    Article  CAS  Google Scholar 

  11. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  PubMed  CAS  Google Scholar 

  12. Lau YH, Rutledge PJ, Watkinson M, Todd MH (2011) Chemicalsensorsthatincorporateclick-derivedtriazoles. Chem Soc Rev 40:2848–2866

    Article  PubMed  CAS  Google Scholar 

  13. Fabbrizzi L, Licchelli M, Mancin F, Pizzeghello M, Rabaioli G, Taglietti A, Tecilla P, Tonellato U (2002) Fluorescence sensing of ionic analytes in water: from transition metal ions to vitamin B13. Chem Eur J 8:94–101

    Article  PubMed  CAS  Google Scholar 

  14. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202

    Article  CAS  Google Scholar 

  15. Snowden TS, Anslyn EV (1999) Anion recognition: synthetic receptors for anions and their application in sensors. Curr Opin Chem Biol 3:740–746

    Article  PubMed  CAS  Google Scholar 

  16. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Teaching old indicators new tricks. Acc Chem Res 34:963–972

    Article  PubMed  CAS  Google Scholar 

  17. World Health Organisation (ed) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organisation, Geneva

    Google Scholar 

  18. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  19. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  20. Cametti M, Rissanen K (2009) Recognition and sensing of fluoride anion. Chem Commun :2809–2829

  21. Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953

    Article  PubMed  CAS  Google Scholar 

  22. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  PubMed  CAS  Google Scholar 

  23. Evans NH, Beer PD (2014) Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew Chem Int Ed 53:11716–11754

    Article  CAS  Google Scholar 

  24. Kaur A, Kolanowski JL, New EJ (2016) Reversible fluorescent probes for biological redox states. Angew Chem Int Ed 55:1602–1613

    Article  CAS  Google Scholar 

  25. Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659

    Article  PubMed  CAS  Google Scholar 

  26. Alreja P, Kaur N (2016) Recent advances in 1,10-phenanthroline ligands for chemosensing of cations and anions. RSC Adv 6:23169–23217

    Article  CAS  Google Scholar 

  27. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent Chemosensors based on Spiroring-opening of Xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  PubMed  CAS  Google Scholar 

  28. Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791

    Article  PubMed  CAS  Google Scholar 

  29. Langton MJ, Beer PD (2014) Rotaxane and Catenane host structures for sensing charged guest species. Acc Chem Res 47:1935–1949

    Article  PubMed  CAS  Google Scholar 

  30. Han C, Li H (2010) Host-molecule-coated quantum dots as fluorescent sensors. Anal Bioanal Chem 397:1437–1444

    Article  PubMed  CAS  Google Scholar 

  31. Zhu L, Zhang L, Younes AH (2009) Mini review: fluorescent heteroditopicligands of metal ions. Supramol Chem 21:268–283

    Article  CAS  Google Scholar 

  32. Ding Y, Tang Y, Zhu W, Xie Y (2015) Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem Soc Rev 44:1101–1112

    Article  PubMed  CAS  Google Scholar 

  33. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  34. Eun Jun M, Roy B, Han AK (2011) “Turn-on” fluorescent sensing with “reactive” probes. Chem Commun 47:7583–7601

    Article  CAS  Google Scholar 

  35. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192

    Article  CAS  Google Scholar 

  36. Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51:3532–3554

    Article  CAS  Google Scholar 

  37. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495

    Article  PubMed  CAS  Google Scholar 

  38. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake KRAS (1992) Molecular fluorescent signalling with ‘fluor-spacer-receptor’ systems: approaches to sensing and switching devices via supramolecularphotophysics. Chem Soc Rev 21:187–195

    Article  CAS  Google Scholar 

  39. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  40. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  41. Grabowski ZR, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55:245–252

    Article  CAS  Google Scholar 

  42. Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W (1979) Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. Nouv J Chim 3:443–454

    CAS  Google Scholar 

  43. Hush NS, Reimers JR (1998) Solvent effects on metal to ligand charge transfer excitations. Coord Chem Rev 177:37–60

    Article  CAS  Google Scholar 

  44. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46:1462–1473

    Article  PubMed  CAS  Google Scholar 

  45. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4589

    Article  CAS  Google Scholar 

  46. Bencini A, Bianchi A, Lodeiro C, Masotti A, Parola AJ, Pina F, de Melo JS, Valtancoli B (2000) A novel fluorescent chemosensor exhibiting exciplex emission. An example of an elementary molecular machine driven by pH and by light. Chem Commun :1639–1640

  47. Wu JS, Zhou JH, Wang PF, Zhang XH, Wu SK (2005) New fluorescent chemosensor based on Exciplex signaling mechanism. Org Lett 7:2133–2136

    Article  PubMed  CAS  Google Scholar 

  48. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun :4332-4353

  49. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun :1740–1741

  50. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE Fluorogens. Acc Chem Res 46:2441–2453

    Article  PubMed  CAS  Google Scholar 

  51. Wang H, Zhao E, Lam JWY, Tang BZ (2015) AIE luminogens: emission brightened by aggregation. Mater Today 18:365–377

    Article  CAS  Google Scholar 

  52. Hu R, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43:4494–4562

    Article  PubMed  CAS  Google Scholar 

  53. Grubbs RD, Maguire ME (1987) Magnesium as a regulatory cation: criteria and evaluation. Magnesium 6:113–127

    PubMed  CAS  Google Scholar 

  54. Li CR, Li SL, Wang GG, Yang ZY (2016) Spectroscopic properties of a chromone-fluorescein conjugate as Mg2+ “turn on” fluorescent probe. J Photochem Photobiol A Chem 356:700–707

    Article  CAS  Google Scholar 

  55. Ma R, Li Q, Zhang Q (2018) A novel selective chemosensor for Mg2+ detection based on quinoline- hydrazone-crown ether. Indian J Chem 57B:120–126

    CAS  Google Scholar 

  56. Soni MG, White SM, Flamm WG, Burdock GA (2001) Safety evaluation of dietary aluminum. Regul Toxicol Pharmacol 33(1):66–79

    Article  PubMed  CAS  Google Scholar 

  57. Bavlor NW, Egan W, Richman P (2002) Vaccine 20:S18

    Article  Google Scholar 

  58. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89(2):101–115

    Article  PubMed  CAS  Google Scholar 

  59. Sargazi M, Roberts NB, Shenkin A (2001) In-vitro studies of aluminium-induced toxicity on kidney proximal tubular cells. J Inorg Biochem 87:37–43

    Article  PubMed  CAS  Google Scholar 

  60. Yousef MI, E-Morsy AM, Hassan MS (2005) Aluminium-induced deterioration in reproductive performance and seminal plasma biochemistry of male rabbits: protective role of ascorbic acid. Toxicology 215:97–107

    Article  PubMed  CAS  Google Scholar 

  61. Wang L, Qin W, Tang X, Dou W, Liu W, Teng Q, Yao X (2010) A selective, cell-permeable fluorescent probe for Al3+ in living cells. Org Biomol Chem 8:3751–3757

    Article  PubMed  CAS  Google Scholar 

  62. Karak D, Lohar S, Sahana A, Guha S, Banerjee A, Das D (2012) An Al3+ induced green luminescent fluorescent probe for cell imaging and naked eye detection. Anal Methods 4:1906

    Article  CAS  Google Scholar 

  63. Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF, Tao SL, Zhang XH, Wu SK, Lee ST (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org Lett 9:33–36

    Article  PubMed  CAS  Google Scholar 

  64. Sen B, Pal S, Lohar S, Mukherjee M, Mandal K-BAR, Chattopadhyay P (2014) A FRET-based ‘off–on’ molecular switch: an effective design strategy for the selective detection of nanomolar Al3+ions in aqueous media. RSC Adv 4:21471–22147

    Article  CAS  Google Scholar 

  65. Jung HS, Kwon PS, Lee JW, Kim J-II, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  PubMed  CAS  Google Scholar 

  66. Linder MC, Azam MH (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S

    PubMed  CAS  Google Scholar 

  67. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    Article  PubMed  CAS  Google Scholar 

  68. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  PubMed  CAS  Google Scholar 

  69. Zhou Y, Wang F, Kim Y, Kim S-J, Yoon J (2009) Cu2+ selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group. Org Lett 11:4442–4445

    Article  PubMed  CAS  Google Scholar 

  70. Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  PubMed  CAS  Google Scholar 

  71. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  72. Hahn SH, Tanner MS, Danke DM, Gahl WA (1995) Normal metallothionein synthesis in fibroblasts obtained from children with Indian childhood cirrhosis or copperassociated childhood cirrhosis. Biochem Mol Med 54:142–145

    Article  PubMed  CAS  Google Scholar 

  73. Brown DR (2001) Copper and prion disease. Brain Res Bull 55:165–173

    Article  PubMed  CAS  Google Scholar 

  74. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  75. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a coppertransporting ATPase. Nat Genet 3:7–13

    Article  PubMed  CAS  Google Scholar 

  76. EPA US (1991) Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule. Fed Regist 56:26460

    Google Scholar 

  77. Lim MH, Wong BA, Pitcock WH, Mokshagundam D, Baik MH, Lippard SJ (2006) Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J Am Chem Soc 128:14364–14373

    Article  PubMed  CAS  Google Scholar 

  78. Mondal B, Lohar S, Pal S, Maji A, Chattopadhyay P (2015) A new chemosensor selective for Cu2+ ions through fluorescence quenching approach applicable to real samples. J Indian Chem Soc 92:1867

    CAS  Google Scholar 

  79. Mohammad RG, Tahereh P, Leila HB, Shohre R, Mohammad Y, Maryam RK, Abolghasem M, Hossein A, Mojtaba S (2001) Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff’s base. Anal Chim Acta 440:81

    Article  Google Scholar 

  80. Klein G, Kaufmann D, Schürch S, Reymond JL (2001) A fluorescent metal sensor based on macrocyclic chelation. Chem Commun 37:561

    Article  Google Scholar 

  81. Gatta’s-Asfura KM, Leblanc RM (2003) PeptidecoatedCdS quantum dots for the optical detection of copper(II) and silver(I). Chem Commun 39:2684

    Article  Google Scholar 

  82. Rurack K, Kollmannsberger M, Genger UR, Daub J (2000) A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969

    Article  CAS  Google Scholar 

  83. Wang C, Lu L, Ye W, Zheng O, Qiu B, Lin Z, Guo L, Chen G (2014) Fluorescence sensor for cu(II) in the serum sample based on click chemistry. Analyst 139:656–659

    Article  PubMed  CAS  Google Scholar 

  84. Wang S, Liu C, Li G, Sheng Y, Sun Y, Rui H, Zhang J, Xu J, Jiang D (2017) The triple roles of glutathione for a DNA-cleaving DNAzyme and development of a fluorescent glutathione/Cu2+-dependent DNAzyme sensor for detection of Cu2+ in drinking water. ACS Sensors 2:364–370

    Article  PubMed  CAS  Google Scholar 

  85. Cimen O, Dinicalp H, Varlıklı C (2015) Studies on UV–vis and fluorescence changements in Co2+ and Cu2+ recognition by a new benzimidazole–benzothiadiazole derivative. Sensors Actuators B Chem 209:853–863

    Article  CAS  Google Scholar 

  86. Maji A, Lohar S, Pal S, Chattopadhyay P (2017) A new rhodamine based ‘turn-on’ Cu2+ ion selective chemosensor in aqueous system applicable in bioimaging. J Chem Sci 129:1423–1430

    Article  CAS  Google Scholar 

  87. Mondal B, Lohar S, Pal S, Maji A, Chattopadhyay P (2015) A new chemosensor selective for Cu2+ ions through fluorescence quenching approach applicable to real samples. J Indian Chem Soc 92:1–8

    Google Scholar 

  88. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  89. Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    Article  PubMed  CAS  Google Scholar 

  90. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Phys Rev 73:79–118

    CAS  Google Scholar 

  91. Voegelin A, Pfister S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Changes in zinc speciation in field soil after contamination with zinc oxide. Environ Sci Technol 39:6616–6623

    Article  PubMed  CAS  Google Scholar 

  92. Xie X, Smart TG (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521–524

    Article  PubMed  CAS  Google Scholar 

  93. Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240

    Article  PubMed  CAS  Google Scholar 

  94. Bush I, Pettingell WH, Paradis MD, Tanzi RE (1994) Modulation of A beta adhesiveness and secretase site cleavage by zinc. J Biol Chem 269:12152–12158

    PubMed  CAS  Google Scholar 

  95. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  PubMed  CAS  Google Scholar 

  96. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  PubMed  CAS  Google Scholar 

  97. Ghosh M, Ghosh A, Ta S, Matalobos JS, Das D (2017) ESIPT-based Nanomolar Zn2+ sensor for human breast Cancer cell (MCF7) imaging. Chemistry Select 2:7426–7431

    CAS  Google Scholar 

  98. Goswami S, Das AK, Manna A, Maity AK, Func HK, Quah CK, Saha P (2014) A colorimetric and ratiometric fluorescent turn-on fluoride chemodosimeter and application in live cell imaging: high selectivity via specific SiO cleavage in semi aqueous media and prompt recovery of ESIPT along with the X-ray structures. Tetrahedron Lett 55:2633–2638

    Article  CAS  Google Scholar 

  99. Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S (2011) Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism. Tetrahedron Lett 52:4631–4635

    Article  CAS  Google Scholar 

  100. Iniya M, Jeyanthi D, Krishnaveni K, Mahes A, Chellappa D (2014) Triazole based ratiometric fluorescent probe for Zn2+and its application in bioimaging. Spectrochim Acta A Mol Biomol Spectrosc 120:40–46

    Article  PubMed  CAS  Google Scholar 

  101. Xu Y, Pang Y (2011) Zn2+-triggered excited-state intramolecular proton transfer: a sensitive probe with near-infrared emission from bis(benzoxazole) derivative. Dalton Trans 40:1503–1509

    Article  PubMed  CAS  Google Scholar 

  102. Goswami S, Manna A, Paul S, Maity AK, Saha P, Quah CK, Fun HK (2014) FRET based ‘red-switch’ for Al3+ over ESIPT based ‘green-switch’ for Zn2+: dual channel detection with live-cell imaging on a dyad platform. RSC Adv 4:34572–34576

    Article  CAS  Google Scholar 

  103. Goswami S, Manna A, Paul S, Das AK, Aicha K, Nandi PK (2013) Resonance-assisted hydrogen bonding induced nucleophilic addition to hamper ESIPT: ratiometric detection of cyanide in aqueous media. Chem Commun 49:2912–2914

    Article  CAS  Google Scholar 

  104. Manna A, Goswami S (2015) Ratiometric detection of hypochlorite applying the restriction to 2-way ESIPT: simple design for “naked-eye” tap water analysis. New J Chem 39:4424–4429

    Article  CAS  Google Scholar 

  105. Kumari B, Lohar S, Ghosh M, TS SA, Banerjee PP, Chattopadhyay A, Das D (2016) Structurally characterized Zn2+ selective Ratiometric fluorescence probe in 100% water for HeLa cell imaging: experimental and computational studies. J Fluoresc 26:87–103

    Article  PubMed  CAS  Google Scholar 

  106. Padghan SD, Puyad AL, Bhosale RS, Bhosale SV, Bhosale SV (2017) A pyrene based fluorescent turn-on chemosensor: aggregation-induced emission enhancement and application towards Fe3+ and Fe2+ recognition. Photochem Photobiol Sci 16:1591–1595

    Article  PubMed  CAS  Google Scholar 

  107. Chen Q, Fang Z (2018) Two sugar-rhodamine “turn-on” fluorescent probes for the selective detection of Fe3+. Spectrochim Acta A Mol Biomol Spectrosc 193:226–234

    Article  PubMed  CAS  Google Scholar 

  108. Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao SL (2016) Nitrogen and phosphorus co-doped carbon Nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl Mater Interfaces 8:10717–10725

    Article  PubMed  CAS  Google Scholar 

  109. Kumar P, Kumar V, Gupta R (2015) Arene-based fluorescent probes for the selective detection of iron. RSC Adv 5:97874–97882

    Article  CAS  Google Scholar 

  110. Hogan CM (2010) Heavy Metal. In: Monosson E, Cleveland C (eds) Encyclopedia of Earth. National Council for Science and the Environment, Washington DC, 234p

  111. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) “A cadmium enzyme from a marine diatom” (PDF). Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  112. World Health Organization. [(accessed on 1 November 2017)]; Available online: http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/

  113. Cheng D, Liu X, Xie Y, Lv H, Wang Z, Yang H, Han A, Yang X, Zang L (2017) A Ratiometric fluorescent sensor for cd based on internal charge transfer. Sensors 17(11):2517

    Article  CAS  Google Scholar 

  114. Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129:1500–1501

    Article  PubMed  CAS  Google Scholar 

  115. Bagchi D, Stohs SJ, Downs W, Bagchi M, Prcuss HG (2012) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    Article  Google Scholar 

  116. Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178

    Article  PubMed  CAS  Google Scholar 

  117. Mao J, Wang L, Dou W, Tang X, Yan Y, Liu W (2007) Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570

    Article  PubMed  CAS  Google Scholar 

  118. Li Z, Zhao W, Zhang Y, Zhang L, Yu M, Liu J, Zhang H (2000) An ‘off-on’ fluorescent chemosensor of selectivity to Cr3+ and its application to MCF-7cells. Tetrahedron 67:7096–7100

    Article  CAS  Google Scholar 

  119. Arakawa H (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. Evidence for the guanine N-7-chromium-phosphate chelate formation. J Biol Chem 275:10150–10153

    Article  PubMed  CAS  Google Scholar 

  120. Dang YQ, Li HW, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+inaqueous solution by using 5,5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Interfaces 1:1533–1538

    Article  PubMed  CAS  Google Scholar 

  121. Paul S, Manna A, Goswami S (2015) A differentially selective molecular probe for detection of trivalent ions Al3+, Cr3+ and Fe3+ upon single excitation in mixed aqueous medium. Dalton Trans 44(26):11805–11810

    Article  PubMed  CAS  Google Scholar 

  122. Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe. Inorg Chem 51:1769–1777

    Article  PubMed  CAS  Google Scholar 

  123. Hu X, Zhang X, He G, He C, Duan C (2011) A FRET approach for luminescence sensing Cr3+ in aqueous solution and living cells through functionalizing glutathione and glucose moieties. Tetrahedron 67:1091–1095

    Article  CAS  Google Scholar 

  124. Cervantes C, C-Garcia J, Devars S, G-Corona F, L-Tavera H, T-Guzman JC, M-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  125. Zhou Z, Yu M, Yang H, Huang K, Li F, Yi T, Huang C (2008) FRET-based sensor for imaging chromium(III) in living cells. Chem Commun 338:7–3389

    Google Scholar 

  126. Zayed M, Norman T (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  127. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–off–on fluorescent carbon dot Nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247

    Article  PubMed  CAS  Google Scholar 

  128. Wu XX, Fu HR, Han ML, Zhou Z, Ma LF (2017) Tetraphenylethylene immobilized metal–organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O7 2− and Nitroaromatic explosives. Cryst Growth Des 17(11):6041–6048

    Article  CAS  Google Scholar 

  129. Sunnapua O, Kotlaa NG, Maddiboyinac B, Asthanad GS, Shanmugapriyaf J, Sekarg K, Singaravadivele S, Sivaramana G (2017) Rhodamine based effective chemosensor for chromium(III) and their application in live cell imaging. Sensors Actuators B 246:761–768

    Article  CAS  Google Scholar 

  130. Sahana S, Mishra G, Sivakumar S, Bharadwaj PK (2018) Rhodamine – cyclohexane diamine based “turn-on” fluorescence chemosensor for Cr3+: photophysical & confocal cell imaging studies. J Photochem Photobiol A Chem 351:42–49

    Article  CAS  Google Scholar 

  131. Stafilov T (2000) Determination of trace elements in minerals by electrothermal atomic absorption spectrometry. Spectrochim Acta B At Spectrosc 55:893–906

    Article  Google Scholar 

  132. Khan RI, Ramu A, Pitchumani K (2018) Design and one-pot synthesis of a novel pyrene basedfluorescent sensor for selective “turn on”, naked eye detection of Ni2+ ions, and live cell imaging. Sensors Actuators B 266:429–437

    Article  CAS  Google Scholar 

  133. Ganjali MR, Hosseini M, Motalebi M, Sedaghat MF, Mizani FF, Norouzi P (2015) Selective recognition of Ni2+ ion based on fluorescence enhancement chemosensor. Spectrochim Acta A Mol Biomol Spectrosc 140:283–287

    Article  PubMed  CAS  Google Scholar 

  134. Dodani SC, He Q, Chang CJ (2009) A turn-on fluorescent sensor for detecting nickel in living cells. J Am Chem Soc 131(50):18020–18021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Barceloux DG, Barceloux DJ (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–216

    Article  PubMed  CAS  Google Scholar 

  136. Okamoto S, Eltis LD (2011) The biological occurrence and trafficking of cobalt. Metallomics 3:963–970

    Article  PubMed  CAS  Google Scholar 

  137. Raux E, Schubert HL, Warren MJ (2000) Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mol Life Sci 57:1880–1893

    Article  PubMed  CAS  Google Scholar 

  138. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1–9

    Article  PubMed  CAS  Google Scholar 

  139. Şenkuytu E, Eçik ET (2018) New hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates as highly selective and sensitive fluorescent chemosensor for Co2+ ions. Spectrochim Acta A Mol Biomol Spectrosc 198:232–238

    Article  PubMed  CAS  Google Scholar 

  140. Mahajan PG, Dige NC, Desai NK, Patil SR, Kondalkar VV, Hong SK, Lee KH (2018) Selective detection of Co2+ by fluorescent nano probe: diagnostic approach for analysis of environmental samples and biological activities. Spectrochim Acta A Mol Biomol Spectrosc 198:136–144

    Article  PubMed  CAS  Google Scholar 

  141. Wang H, Wang YX, Jin JY, Yang RH (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80:9021–9028

    Article  PubMed  CAS  Google Scholar 

  142. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  143. Liu R, Li H, Kong W, Liu J, Liu Y, Tong C, Zhang X, Kang Z (2013) Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater Res Bull 48:2529–2534

    Article  CAS  Google Scholar 

  144. Kim HN, Nam SW, Swamy KMK, Jin Y, Chen X, Kim Y, Kim SJ, Park S, Yoon J (2011) Rhodamine Hydrazone derivatives as Hg2+ selective fluorescent and colorimetric Chemosensors and their applications to bioimaging and microfluidic system. Analyst 136:1339–1343

    Article  PubMed  CAS  Google Scholar 

  145. Kwon SK, Kim HN, Rho JH, Swamy KMK, Shanthakumar SM, Yoon B (2009) Rhodamine derivative bearing histidine binding site as a fluorescent Chemosensor for Hg2+. Bull Korean Chem Soc 30:719–772

    Article  CAS  Google Scholar 

  146. Sunnapu O, Kotla NG, Maddiboyina B, Singaravadivel S, Sivaraman G (2016) A rhodamine based “turn-on” fluorescent probe for Pb(II) and live cell imaging. RSC Adv 6:656–660

    Article  CAS  Google Scholar 

  147. Azadbakht R, Vaisi H, Mohamadv H, Khanabadi J (2015) A new fluorescent chemosensor for Pb2+ ions based on naphthalene derivatives. Spectrochim Acta A Mol Biomol Spectrosc 145:575–579

    Article  PubMed  CAS  Google Scholar 

  148. Kuo SY, Li HH, Wu PJ, Chen CP, Huang YC, Chan YH (2015) Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for Ratiometric detection of lead ions in living cells. Anal Chem 87:4765–4771

    Article  PubMed  CAS  Google Scholar 

  149. Wang Y, Hu J, Zhuang Q, Ni Y (2016) Label-free fluorescence sensing of lead(II) ions and sulfide ions based on luminescent molybdenum disulfide Nanosheets. ACS Sustain Chem Eng 4:2535–2541

    Article  CAS  Google Scholar 

  150. Prabhu J, Velmurugan K, Zhang Q, Radhakrishnan S, Tang L, Nandhakumar R (2017) Symmetric fluorescent probes for the selective recognition of Ag-ion via restricted C= N isomerization and on-site visual sensing applications. J Photochem Photobiol A Chem 337:6–18

    Article  CAS  Google Scholar 

  151. Li Z, Yang JO, Fu YJ, Li CY, Li YF, Li SJ (2017) A borondipyrrolemethene-based turn-on fluorescent probe for silver ion with high sensitivity and selectivity and its application in water samples and living cells. Tetrahedron Lett 58:3536–3540

    Article  CAS  Google Scholar 

  152. Wang HH, Xue L, Qian YY, Jiang H (2010) Novel ratiometric fluorescent sensor for silver ions. Org Lett 12(2):292–295

    Article  PubMed  CAS  Google Scholar 

  153. Tan SS, Teo YN, Kool ET (2010) Selective sensor for silver ions built from polyfluorophores on a DNA backbone. Org Lett 12(21):4820–4823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Nakazawa H, Kikuchi Y, Isago T, Morioka K, Yoshinaga Y (2004) Treatment of paralytic lagophthalmos by loading the lid with a gold plate and lateral canthopexy. Scand J Plast Reconstr Surg Hand Surg 38(3):140–144

    Article  PubMed  Google Scholar 

  155. Choi JY, Kim GH, Guo Z, Swamy KMK, Lee HY, Pai J, Shin S, Shin I, Yoon J (2013) Highly selective Ratiometric fluorescent probe for Au3+ and its application to bioimaging. Biosens Bioelectron 49:438–441

    Article  PubMed  CAS  Google Scholar 

  156. Srisuratsiri P, Kanjanasirirat P, Chairongdua A, Kongsaeree P (2017) Reversible rhodamine-alkyne Au3+-selective chemosensor and its bioimaging application. Tetrahedron Lett 58:3194–3199

    Article  CAS  Google Scholar 

  157. Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Lu J, Ding S, Li L, Shelton BJ, Tucker T, Evers BM, Zhang Z, Shi X (2012) Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 262:11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200

    Article  PubMed  CAS  Google Scholar 

  159. Lohar S, Pal S, Sen B, Mukherjee M, Banerjee S, Chattopadhyay P (2014) Selective and sensitive turn-on Chemosensor for Arsenite ion at the ppb level in aqueous media applicable in cell staining. Anal Chem 86(22):11357–11361

    Article  PubMed  CAS  Google Scholar 

  160. Saha J, Roy AD, Dey D, Nath J, Bhattacharjee D, Hussain SA (2017) Development of arsenic (v) sensor based on fluorescence resonance energy transfer. Sensors Actuators B Chem 241:1014–1023

    Article  CAS  Google Scholar 

  161. Tamanini E, Katewa A, Sedger LM, Todd MH, Watkinson M (2009) A synthetically simple, click-generated Cyclam-based zinc (II) sensor. Inorg Chem 48:319–324

    Article  PubMed  CAS  Google Scholar 

  162. Tamanini E, Flavin K, Motevalli M, Piperno S, Gheber LA, Todd MH, Watkinson M (2010) Homogeneous and heterogeneous fluorescent sensors for Zn(II). Inorg Chem 49:3789–3800

    Article  PubMed  CAS  Google Scholar 

  163. Lau YH, Price JR, Todd MH, Rutledge PJ (2011) A click fluorophore sensor that can distinguish CuII and HgII via selective anion-induced Demetallation. Chem Eur J 17:2850–2858

    Article  PubMed  CAS  Google Scholar 

  164. Ast S, Rutledge PJ, Todd MH (2012) Reversing the Triazole topology in a Cyclam-Triazole-dye ligand gives a 10-fold brighter signal response to Zn2+ in aqueous solution. Eur J Inorg Chem 2012:5611–5615

    Article  CAS  Google Scholar 

  165. Ast S, Kuke S, Rutledge PJ, Todd MH (2015) Using click chemistry to tune the properties and the fluorescence response mechanism of structurally similar probes for metal ions. Eur J Inorg Chem 2015:58–66

    Article  CAS  Google Scholar 

  166. Wong JKH, Ast S, Yu M, Flehr R, Counsell AJ, Turner P, Crisologo P, Todd MH, Rutledge PJ (2016) Synthesis and evaluation of 1,8-disubstituted-cyclam/naphthalimide conjugates as probes for metal ions. Chemistry Open 5(4):375–385

    PubMed  CAS  Google Scholar 

  167. Yu M, Ast S, Yu Q, Lo ATS, Flehr R, Todd MH, Rutledge PJ (2014) Incorporating a Piperidinyl Group in the Fluorophore Extends the fluorescence lifetime of click-derived Cyclam-Naphthalimide conjugates. PLoS ONE 9:e100761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Yu M, Wong JKH, Tang C, Turner P, Todd MH, Rutledge PJ (2015) Efficient deprotection of F-BODIPY derivatives: RemovalofBF2 using Brønsted acids. Beilstein J Org Chem 11:37–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Maheswari PU, Renuga D, Henry LJK, Ruckmani K (2017) A novel biphenolic ligand for selective Mg2+ and Zn2+ ions sensing followed by colorimetric, spectroscopic and cell imaging methods. Eur J Pharm Sci 116:61–69

    Article  CAS  Google Scholar 

  170. Ghosh A, Das D (2015) X-ray structurally characterized sensors for ratiometric detection of Zn2+and Al3+ in human breast cancer cell (MCF7): development of binary logic gate as molecular switch. Dalton Trans 44:11797–11804

    Article  PubMed  CAS  Google Scholar 

  171. Kumar VV, Raman T, Anthony SP (2017) Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn2+ and turn-off sensing of Pb2+ in aqueous medium and zebrafish eggs. New J Chem 41:15157–15164

    Article  Google Scholar 

  172. Wang C, Fu J, Yao K, Xue K, Xu K, Pang X (2018) Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions. Spectrochim Acta A Mol Biomol Spectrosc 199:403–411

    Article  PubMed  CAS  Google Scholar 

  173. Ghorai A, Mondal J, Chowdhury S, Patra GK (2016) Solvent-dependent fluorescent-colorimetric probe for dual monitoring of Al3+and Cu2+ in aqueous solution: an application to bio-imaging. Dalton Trans 45:11540–11553

    Article  PubMed  CAS  Google Scholar 

  174. Gao M, Xie P, Wang L, Miao X, Guo F (2015) A new optical sensor for Al/Fe based on PET and chelation-enhanced fluorescence. Res Chem Intermed 41(12):9673–9685

    Article  CAS  Google Scholar 

  175. Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric detection of Cr3+and Hg2+by a Naphthalimide-rhodamine based fluorescent probe. Inorg Chem 51:1769–1777

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Rooj, B., Dutta, A. et al. Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes. J Fluoresc 28, 999–1021 (2018). https://doi.org/10.1007/s10895-018-2263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2263-y

Keywords

Navigation