Skip to main content

Advertisement

Log in

Effect of Mercaptocarboxylic Acids on Luminescent Properties of CdTe Quantum Dots

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

CdTe quantum dots (QDs) were prepared in an aqueous solution using various mercaptocarboxylic acids, such as 3-mercaptopropionic acid (MPA) and thioglycolic acid (TGA), as stabilizing agents. The experimental result indicated that these stabilizing agents played an important role for the properties of the QDs. Although both TGA and MPA-capped CdTe QDs exhibited the tunable photoluminescence (PL) from green to red color, the TGA-capped QDs revealed a higher PL quantum yield (QY) up to 60% than that of MPA-capped QDs (up to 50%) by using the optimum preparation conditions, such as a pH value of ~11.2 and a TGA/Cd molar ratio of 1.5. PL lifetime measurements indicate that the TGA-capped QDs exhibited a short average lifetime while the MPA-capped QDs revealed a long one. Furthermore, the average lifetime of the TGA-capped QDs increased with the increase of the QDs size, while a decreased lifetime for the MPA-capped QDs was obtained. This means that the PL lifetime depended strongly on the surface state of the CdTe QDs. These results should be utilized for the preparation and applications of QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

QDs:

Quantum dots

MPA:

3-mercaptopropionic acid

TGA:

Thioglycolic acid

PL:

Photoluminescence

QY:

Quantum yield

FWHM:

Full width at half maximum

References

  1. Zaman MB, Baral TN, Zhang J, Whitfield D, Yu K (2009) Single-domain antibody functionalized CdSe/ZnS quantum dots for cellular imaging of cancer cells. J Phys Chem C 113(2):496–499

    Article  CAS  Google Scholar 

  2. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105(12):2260–2263

    Article  CAS  Google Scholar 

  3. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich YP, Donegan JF (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 111(40):14628–14637

    Article  CAS  Google Scholar 

  4. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  5. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119(30):7019–7029

    Article  CAS  Google Scholar 

  6. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO asprecursor. J Am Chem Soc 123(1):183–184

    Article  PubMed  CAS  Google Scholar 

  7. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784

    Article  CAS  Google Scholar 

  8. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett 1(4):207–211

    Article  CAS  Google Scholar 

  9. de Mello Donega C, Hickey SG, Wuister SF, Vanmaekelbergh D, Meijerink A (2003) Single-step sSynthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. J Phys Chem B 107(2):489–496

    Article  Google Scholar 

  10. Gao M, Kirstein S, Möhwald H, Rogach AL, Kornowski A, Eychmüller A, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102(43):8360–8363

    Article  CAS  Google Scholar 

  11. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185

    Article  CAS  Google Scholar 

  12. Wuister SF, Swart L, van Driel F, Hickey SG, de Mello Donega C (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3(4):503–507

    Article  CAS  Google Scholar 

  13. Wuister SF, de Mello Donega C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108(45):17393–17397

    Article  CAS  Google Scholar 

  14. Demas JN, Grosby GA (1971) Measurement of photoluminescence quantum yields. J Phys Chem 75(8):991–1024

    Google Scholar 

  15. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27(4):455–462

    Article  Google Scholar 

  16. Shavel A, Gaponik N, Eychmüller A (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110(39):19280–19284

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Chen W, Joly AG, Wang Y, Pope C, Zhang Y, Bovin J, Sherwood P (2006) Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. J Phys Chem B 110(34):16992–17000

    Article  PubMed  CAS  Google Scholar 

  18. Kapitonov AM, Stupak AP, Gaponenko SV, Petrov EP, Rogach AL, Eychmuöller A (1999) Luminescence properties of thiol-stabilized CdTe nanocrystals. J Phys Chem B 103(46):10109–10113

    Article  CAS  Google Scholar 

  19. Wuister SF, Koole R, de Mello Donega C, Meijerink A (2005) Temperature-dependent energy transfer in cadmium telluride quantum dot solids. J Phys Chem B 109(12):5504–5508

    Article  PubMed  CAS  Google Scholar 

  20. Osovsky R, Kloper V, Kolny-Olesiak J, Sashchiuk A, Lifshitz E (2007) Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles. J Phys Chem C 111(29):10841–10847

    Article  CAS  Google Scholar 

  21. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  22. Jones M, Nedeljkovic J, Ellingson RJ, Nozik AJ, Rumbles G (2003) Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J Phys Chem B 107(41):11346–11352

    Article  CAS  Google Scholar 

  23. Yang P, Murase N (2010) Preparation-condition dependence of hybrid SiO2-coated CdTe nanocrystals with intense and tunable photoluminescence. Adv Funct Mater 20(8):1258–1265

    Article  CAS  Google Scholar 

  24. Chin PTK, de Donega CM, van Bavel SS, Meskers SCJ, Sommerdijk NAJM, Janssen RAJ (2007) Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J Am Chem Soc 129(48):14880–14886

    Article  PubMed  CAS  Google Scholar 

  25. Aldeek F, Balan L, Lambert J, Schneider R (2008) The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots. Nanotechnology 19(47):475401–09

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Program for Taishan Scholars of Shandong Province, projects from National Science Foundation of China (21071061 & 50972081), and projects from Natural Science Foundation of Shandong Province (ZR2010EZ001 & Y2008F32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Zhang, A., Cao, Y. et al. Effect of Mercaptocarboxylic Acids on Luminescent Properties of CdTe Quantum Dots. J Fluoresc 22, 121–127 (2012). https://doi.org/10.1007/s10895-011-0937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0937-9

Keywords

Navigation