Skip to main content
Log in

Spectrofluorimetric Protocol for Ceftriaxone in Commercial Formulation and Human Plasma After Condensation with Formaldehyde and Ethyl Acetoacetate

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new spectrofluorimetric method has been developed and validated for the quantification of ceftriaxone in bulk powder, pharmaceutical formulations and spiked human plasma. The developed method is reproducible, accurate, sensitive and cost effective. In this method, ceftriaxone was converted into a fluorescent compound by reacting with 0.8 M ethyl acetoacetate and 25% formaldehyde in a buffered medium (pH = 4.2) at 90 °C. The excitation and emission wavelengths of the fluorescent reaction product are 316 nm and 388 nm respectively. Optimization of the experimental conditions affecting the condensation reaction were carefully carried out and the optimum experimental conditions were incorporated in the procedure. The developed method has a broad linear range (0.2–20 μg mL−1) with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 1.94 × 10−2 μg mL−1 and 6.47 × 10−2 μg mL−1 respectively. The common excipients and co-administered drugs were investigated for their interferences effect in the assay. The developed method was validated statistically through recovery studies and successfully applied to ceftriaxone determination in bulk powder, pharmaceutical formulations and spiked human plasma samples. The percent recoveries were found to be in the range of 99.04–100.26% for bulk powder, 98.88–99.92% for pharmaceutical formulations and 94.22–98.48% for spiked human plasma. The results were verified by comparing with reference literature HPLC method and were found in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amin AS, Ragab GH (2004) Spectrophotometric determination of certain cephalosporins in pure form and in pharmaceutical formulations. Spectrochimica Acta Part A 60:2831–2835

    Article  Google Scholar 

  2. Angehrn P, Probst PJ, Reiner R, Then RL (1980) Ro 13–9904, A long-acting broad-spectrum cephalosporin: in vitro and in vivo studies. Antimicrob Agents Chemother 18:913–921

    PubMed  CAS  Google Scholar 

  3. Beam TR Jr (1985) Ceftriaxone: a beta-lactamase-stable, broad-spectrum cephalosporin with an extended half-life. Pharmacotherapy 5:237–253

    PubMed  CAS  Google Scholar 

  4. Neu HC (1987) Cephalosporins in the treatment of meningitis. Drugs 34:135–153

    Article  PubMed  Google Scholar 

  5. Owens HM, Destache CJ, Dash AK (1999) Simple liquid chromatographic method for the analysis of the blood brain barrier permeability characteristics of ceftriaxone in an experimental rabbit meningitis model. J Chromatogr B 728:97–105

    Article  CAS  Google Scholar 

  6. Balant L, Dayer P, Auckenthaler R (1985) Clinical pharmacokinetics of the third generation cephalosporins. Clin Pharmacokinet 10:101–143

    Article  PubMed  CAS  Google Scholar 

  7. Kovar A, Dalla Costa T, Derendorf H (1997) Comparison of plasma and free tissue levels of ceftriaxone in rats by microdialysis. J Pharm Sci 86:52–56

    Article  PubMed  CAS  Google Scholar 

  8. Soback S, Ziv G (1988) Pharmacokinetics and bioavailability of ceftriaxone administered intravenously and intramuscularly in calves. Am J Vet Res 49:535–538

    PubMed  CAS  Google Scholar 

  9. Bergan T (1987) Pharmacokinetic properties of the cephalosporins. Drugs 34:89–104

    Article  PubMed  CAS  Google Scholar 

  10. Meyers BR, Srulevitch ES, Jacobson J, Hirschman SZ (1983) Crossover study of the pharmacokinetics of ceftriaxone administered intravenously or intramuscularly to healthy volunteers. Antimicrob Agents Chemother 24:812–814

    PubMed  CAS  Google Scholar 

  11. Ismail MM (2005) Pharmacokinetics, urinary and mammary excretion of ceftriaxone in lactating goats. J Vet Med Series A 52:354–358

    Article  CAS  Google Scholar 

  12. Zhou HH, Chan YPM, Arnold K, Sun M (1985) Single-dose pharmacokinetics of ceftriaxone in healthy Chinese adults. Antimicrob Agents Chemother 27:192–196

    PubMed  CAS  Google Scholar 

  13. Bourget P, Fernandez H, Quinquis V, Delouis C (1993) Pharmacokinetics and protein binding of ceftriaxone during pregnancy. Antimicrob Agents Chemother 37(1):54–59

    PubMed  CAS  Google Scholar 

  14. Trautmann KH, Haefelfinger P (1981) Determination of the cephalosporin Ro 13-99041 in plasma, urine, and bile by means of ion-pair reversed phase chromatography. J High Resolut Chromatogr 4(2):54–59

    Article  CAS  Google Scholar 

  15. Abdel-Hamid ME (1998) FSQ spectrophotometric and HPLC analysis of some cephalosporins in the presence of their alkali-induced degradation products. IL Farmaco 53:132–138

    Article  CAS  Google Scholar 

  16. Hakim L, Bourne DW, Triggs EJ (1988) High-performance liquid chromatographic assay of cefotaxime, desacetylcefotaxime and ceftriaxone in rat plasma. J Chromatogr 424(1):111–117

    PubMed  CAS  Google Scholar 

  17. Jungbluth GL, Jusko WJ (1989) Ion-paired reversed-phase high-performance liquid chromatography assay for determination of ceftriaxone in human plasma and urine. J Pharm Sci 78(11):968–970

    Article  PubMed  CAS  Google Scholar 

  18. Hiremath B, Mruthyunjayaswamy BHM (2009) Development and validation of a high performance liquid chromatographic determination of ceftriaxone sodium and its application to drug quality control. Anal Lett 42:2180–2191

    Article  CAS  Google Scholar 

  19. Shrivastava SM, Singh R, Tariq A, Siddiqui MR, Yadav J, Negi PS, Chaudhary M (2009) A novel high performance liquid chromatographic method for simultaneous determination of ceftriaxone and sulbactam in sulbactomax. Int J Biomed Sci 5:37–43

    CAS  Google Scholar 

  20. Nemutlua E, Kır S, Katlan D, Beksac MS (2009) Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta 80:117–126

    Article  Google Scholar 

  21. Granich GG, Krogstad DJ (1987) Ion pair high performance liquid chromatographic assay for ceftriaxone. Antimicrob Agents Chemother 31(3):385–388

    PubMed  CAS  Google Scholar 

  22. Khasanov VV, Sokolovich EG, Dychko KA (2006) Determination of ceftriaxone in blood and tissues using ion-exchange chromatography. Pharmaceut Chem J 40(2):47–49

    Article  Google Scholar 

  23. Pajchel G, Tyski S (2000) Adaptation of capillary electrophoresis to the determination of selected cephalosporins for injection. J Chromatogr A 895:27–31

    Article  PubMed  CAS  Google Scholar 

  24. Reddy GVS, Reddy SJ (1997) Estimation of cephalosporin antibiotics by differential pulse polarography. Talanta 44:627–631

    Article  PubMed  CAS  Google Scholar 

  25. Zhang D, Ma Y, Zhou M, Li L, Chen H (2006) Determination of ceftriaxone sodium in pharmaceutical formulation by flow injection analysis with Acid potassium permanganate chemiluminescence detection. Anal Sci 22:183–186

    Article  PubMed  CAS  Google Scholar 

  26. Al-Momani IF (2001) Spectrophotometric determination of selected cephalosporins in drug formulation using flow injection analysis. J Pharm Biomed Anal 25:751–757

    Article  PubMed  CAS  Google Scholar 

  27. El-Walily AFM, Gazy AA, Belal SF, Khamis EF (2000) Quantitative determination of some thiazole cephalosporins through complexation with palladium (II) chloride. J Pharm Biomed Anal 22:385–392

    Article  PubMed  CAS  Google Scholar 

  28. El Walily AFM, Gazy AAK, Belal SF, Khamis EF (2000) Use of cerium (IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations. Spectrosc Lett 33(6):931–948

    Article  CAS  Google Scholar 

  29. Saleh GA, El-Shaboury SR, Mohamed FA, Rageh AH (2009) Kinetic spectrophotometric determination of certain cephalosporins using oxidized quercetin reagent. Spectrochimica Acta Part A 73:946–954

    Article  Google Scholar 

  30. Nakanomyo H, Hiraoka M, Kidono M (1990) Microbiological assay method of BMY-28100 and some other cephem antibiotic in serum and tissues, development of new sample preparation with Evan’s blue. Jpn J Antibiot 43(9):1538–1544

    PubMed  CAS  Google Scholar 

  31. Bebawy LI, Kelani KE, Fattah L (2003) Fluorimetric determination of some antibiotics in raw material and dosage forms through ternary complex formation with terbium (Tb3+). J Pharm Biomed Anal 32:1219–1225

    Article  PubMed  CAS  Google Scholar 

  32. Omar MA, Abdelmageed OH, Attia TZ (2009) Kinetic Spectrofluorimetric determination of certain cephalosporins in human plasma. Talanta 77:1394–1404

    Article  PubMed  CAS  Google Scholar 

  33. Belliveau PP, Freeman CD, Nicolau DP, Nightingale CH, Tessier PR, Quintiliani R (1996) Serum bactericidal activity of ceftizoxime and ceftriaxone against pathogens associated with community-acquired and nosocomial pneumonias. Am J Health-Syst Pharm 53(9):1024–1027

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, J., Jan, M.R., Shah, S. et al. Spectrofluorimetric Protocol for Ceftriaxone in Commercial Formulation and Human Plasma After Condensation with Formaldehyde and Ethyl Acetoacetate. J Fluoresc 21, 2155–2163 (2011). https://doi.org/10.1007/s10895-011-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0917-0

Keywords

Navigation