Skip to main content
Log in

Synergistic Interactions Between Cry1Ac and Natural Cotton Defenses Limit Survival of Cry1Ac-resistant Helicoverpa Zea (Lepidoptera: Noctuidae) on Bt Cotton

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of the bollworm Helicoverpa zea (Boddie) show some tolerance to Bacillus thuringiensis (Bt) Cry1Ac, and can survive on Cry1Ac-expressing Bt cotton, which should increase resistance development concerns. However, field-evolved resistance has not yet been observed. In a previous study, a population of H. zea was selected for stable resistance to Cry1Ac toxin. In the present study, we determined in laboratory bioassays if larvae of the Cry1Ac toxin-resistant H. zea population show higher survival rates on field-cultivated Bt cotton squares (= flower buds) collected prebloom—bloom than susceptible H. zea. Our results show that Cry1Ac toxin-resistant H. zea cannot complete larval development on Cry1Ac-expressing Bt cotton, despite being more than 150-fold resistant to Cry1Ac toxin and able to survive until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, we investigated whether Cry1Ac interacts with gossypol and or other compounds offered with cotton powder in artificial diet. Diet incorporation bioassays were conducted with Cry1Ac toxin alone, and with gossypol and 4% cotton powder in the presence and absence of Cry1Ac. Cry1Ac toxin was significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac with gossypol or cotton powder were synergistic against resistant, but not against susceptible H. zea. Gossypol concentrations in individual larvae showed no significant differences between insect strains, or between larvae fed gossypol alone vs. those fed gossypol plus Cry1Ac. These results may help explain the inability of Cry1Ac-resistant H. zea to complete development on Bt cotton, and the absence of field-evolved resistance to Bt cotton by this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhurst, R.J., James, W., Bird, L. J., and Beard, C. 2003. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 96:1290–1299.

    PubMed  CAS  Google Scholar 

  • Ali, M.I., Luttrell, R. G., and Young, S. Y. 2006. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J. Econ. Entomol. 99:164–175.

    Article  PubMed  CAS  Google Scholar 

  • Ali, I., Abel, C., Bradley, J. R., Head, H., Jackson, R., Kurtz, R., Leonard, B. R., Lopez, J., Luttrell, R. G., Moar, W. J., Mullins, W., Ruberson, J., Sivasupramaniam, S., and Storer, N. P. 2008. Monitoring Helicoverpa zea susceptibilities to Bt toxins: Results of 2007 studies. pp.1020–1034. in Proc. Beltwide Cotton Conf., National Cotton Council, Memphis, TN.

  • Anilkumar, K. J., Rodrigo-Simon, A., Ferre, J., Pusztai-Carey, M., Sivasupramaniam, S., and Moar, W. J. 2008a. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl. Environ. Microbiol. 74: 462–469.

    Article  CAS  Google Scholar 

  • Anilkumar, K.J., Pusztai-Carey, M., and Moar, W. J. 2008b. Fitness costs associated with Cry1Ac-resistant Helicoverpa zea (Lepidoptera: Noctuidae): A factor countering selection for resistance to Bt cotton? J. Econ. Entomol. 101(4):1421–1431.

    Article  Google Scholar 

  • Bird, L.J., and Akhurst, R. J. 2004. Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. J. Econ. Entomol. 97:1699–709.

    PubMed  CAS  Google Scholar 

  • Brickle, D.S., Turnipseed, S.G., and Sullivan, M. J. 2001. Efficacy of insecticides of different chemistries against Helicoverpa zea (Lepidoptera: Noctuidae) in transgenic Bacillus thuringiensis and conventional cotton. J. Econ. Entomol. 94:86–92.

    PubMed  CAS  Google Scholar 

  • Broderick, N.A., Goodman, R. M. Raffa, K. F., and Handelsman, J. 2000. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 29:101–107.

    CAS  Google Scholar 

  • Burd, A.D., Gould, F., Bradley, J. R., Van Duyn, J. W., and Moar, W. J. 2003. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol. 96:137–142.

    PubMed  CAS  Google Scholar 

  • Carrière Y, Ellers-Kirk, C., Biggs, R., Higginson, D. M., Dennehy, T. J., and. Tabashnik, B. E. 2004. Effects of gossypol on fitness costs associated with resistance to Bt cotton in pink bollworm. J. Econ. Entomol. 97:1710–1718.

    PubMed  Google Scholar 

  • Carrière Y, Ellers-Kirk, C., Biggs, R. W., Nyboer, M. E., Unnithan GC, Dennehy, T. J., and Tabashnik, B. E. 2006. Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance. J. Econ. Entomol. 99:1925–1935.

    PubMed  Google Scholar 

  • Chen, J., Hua, G., Jurat-Fuentes, J. L., Abdullah, M. A., and Adang, M. J. 2007. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc. Natl. Acad. Sci. USA 104:13901–13906.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807–813.

    PubMed  CAS  Google Scholar 

  • Gassmann, A. J., Carriere, Y., and Tabashnik, B. E. 2009. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2009. 54:147–163.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43:701–726.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., F. Silva, F. J., and Moar, W. J. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA. 89:7986–7990.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., Anderson, A., Reynolds, A., Bumgarner, L., and Moar, W. 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88: 1545-1559.

    CAS  Google Scholar 

  • Greenplate, J.T. 1999. Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J. Econ. Entomol. 92:1377–1383.

    CAS  Google Scholar 

  • Harris, M.K. 1991. Bacillus thuringiensis and pest control. Science. 253:1075.

    Article  PubMed  CAS  Google Scholar 

  • Hedin, P.A., Parrott, W. L., and Jenkins, J. N. 1991. Effects of cotton plant allelochemicals and nutrients on behavior and development of tobacco budworm. J. Chem. Ecol. 17:1107–1121.

    Article  CAS  Google Scholar 

  • Henneberry, T.J. and Jech, L. J. 2007. Effects of pink bollworm resistance to transgenic cotton on moth mating, oviposition and larval progeny development. Arthropod Manag. Tests 32, Report No. M3.

  • Herfs, W. 1965. Die vertraeglichkeit von Bacillus thuringiensis Praeparaten mit chemishen Pflanzenschutzmittlen und mit Beistoffen. Z. Pflanzenkra. Pflanzenschutz. 72:584–599.

    CAS  Google Scholar 

  • Jackson, R.E., Bradley JR, J. R., Van Duyn, J. W., and Gould, F. 2004a. Comparative production of Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic cotton expressing either one or two Bacillus thuringiensis proteins with and without insecticide oversprays. J. Econ. Entomol. 97:1719–1725.

    Article  CAS  Google Scholar 

  • Jackson, R.E., Bradley JR, J. R., and Van Duyn, J. W. 2004b. Performance of feral and Cry1Ac-selected Helicoverpa zea (Lepidoptera: Noctuidae) strains on transgenic cottons expressing one or two Bacillus thuringiensis spp. kurstaki proteins under greenhouse conditions. J. Entomol. Sci. 39:46–55.

    CAS  Google Scholar 

  • Jalali, S. K., Mohan, K. S., Singh, S. P., Manjunath, T. M., and Lalitha, Y. 2004. Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein. Crop Prot. 23:53–59.

    Article  CAS  Google Scholar 

  • Liu, Y.B., Tabashnik, B. E., Moar, W. J., and Smith, R. A. 1998. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 64:1385–1389.

    PubMed  CAS  Google Scholar 

  • Liu, Y.B., Tabashnik, B. E., Dennehy, T. J., Patin, A. L., and Bartlett, A. C. 1999. Development time and resistance to Bt crops. Nature 400: 519.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell, R.G., Wan, L., and Knighten, K. 1999. Variation in susceptibility of noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J. Econ. Entomol. 92:21–32.

    CAS  Google Scholar 

  • Macintosh, S. C., Kishore, G. M.,, Perlak, F. J., Marrone, P. G., Stone, T. B., Stevens, S. R., and Fuchs, R. L. 1990a. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J. Agric. Food Chem. 38:1145–1152.

    Article  CAS  Google Scholar 

  • Macintosh, S. C., Stone, T. B., Sims, S. R., Hunst, P. L., Greenplate, J. T., Marrone, P. G., Perlak, F. J., Fischhoff, D. A., and Fuchs, R. L. 1990b. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J. Invertebr. Pathol. 56:258–66.

    Article  CAS  Google Scholar 

  • Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., Huang, Y.-P., and Chen, X.-Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnol. 25:1307–1313.

    Article  CAS  Google Scholar 

  • Matsumura, F. 1985. Toxicology of Insecticides, 2nd Edition. Plenum. New York and London. 598 pp.

    Google Scholar 

  • Moar, W. J. and Anilkumar, K. J. 2007. The power of the pyramid. Science. 318: 1561–1562.

    Article  PubMed  CAS  Google Scholar 

  • Moar, W.J., Osbrink, W. L. A., and Trumble, J. T. 1986. Potentiation of Bacillus thuringiensis var. kurstaki with Thuringiensin on beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 79:1443–1446.

  • Moar, W.J., Trumble, J. T., and Federici, B. A. 1989. Comparative toxicity of spores and crystals from the NRD-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 82:1593–1603.

    CAS  Google Scholar 

  • Moar, W. J., Pusztai-Carey, M., and Mack, T. P. 1995a. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 88:606–609.

    CAS  Google Scholar 

  • Moar, W.J., Pusztai-Carey, M., Faassen, H. V., Bosch, D., Frutos, R., Rang, C., Luo, K., and Adang, M. J. 1995b. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61:2086–2092.

    CAS  Google Scholar 

  • Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers-Kirk, C., Higginson, D., Holley, D., Gahan, L. J., Heckel, D. G., Carriere, Y., Dennehy, T. J., Brown, J. K., and Tabashnik, B. E. 2003. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. USA 100:5004–5009.

    Article  PubMed  CAS  Google Scholar 

  • Moar W., Roush, R., Shelton, A. Ferre, J., Macintosh, S., Leonard, B. R., and Abel, C. 2008. Field evolved resistance to Bt toxins. Nat. Biotech. 26:172–174

    Article  CAS  Google Scholar 

  • Naeem, M., G. P. Waldbauer, and S. Friedman. 1992. Heliothis zea larvae respond to diluted diets by increased searching behavior as well as by increased feeding. Entomol. Exp. Appl. 65: 95–98.

    Article  Google Scholar 

  • Orth, R.G., Head, G., and Mierkowski, M. 2007. Determining larval host plant use by a polyphagous lepidopteran through analysis of adult moths for plant secondary metabolites. J. Chem. Ecol. 33: 1131–1148.

    Article  PubMed  CAS  Google Scholar 

  • Pusztai-Carey, M., Carey, P., Lessard, T., and Yaguchi, M. 1994. USA patent # 5356788.

  • Roush, R.T. 1997. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci. 51:328–334.

    Article  CAS  Google Scholar 

  • SAS Institute. 2003. SAS software, release 9.1. SAS Institute, Cary, NC.

  • Sachs, E. S., Benedict, J. H., Taylor, J. F., Stelly, D. M., Davis, S. K., and Altman, D. W. 1996. Pyramiding Cry1A(b) insecticidal protein and terpenoids in cotton to resist tobacco budworm (Lepiodptera: Nocutidae) Environ. Entomol. 25:1257–1266

    CAS  Google Scholar 

  • Salama, H.S., Foda, M. S., Zaki, F. N., and Moawad, S. 1984. Potency of combinations of Bacillus thuringiensis and chemical insecticides on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 77:885–890.

    CAS  Google Scholar 

  • Schabenberger, O. and Pierce, F. J. 2004. Contemporary Statistical Models for the Plant and Soil Sciences. CRC, Boca Raton, FL, USA.

    Google Scholar 

  • Sivasupramaniam S., Moar, W. J., Ruschke, L. G., Osborn, J. A., Jiang, C., Sebaugh, J. L., Brown, G. R., Shappley, Z. W., Oppenhuizen, M. E., Mullins, J. W., and Greenplate, J. T. 2008. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. J. Econ. Entomol. 101:546–554.

    Article  PubMed  CAS  Google Scholar 

  • Stipanovic, R.D., Lopez, J., Dowd, M. K., Puckhaber, L. S., and Duke, S. E 2006. Effect of racemic and (+)- and (−)-gossypol on the survival and development of Helicoverpa zea larvae. J. Chem. Ecol. 32:959–968.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B. E., Patin, A. L, Dennehy, T. J., Liu, Y., Carriere, Y., Sims, M. A., and Antilla, L. 2000. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc. Natl. Acad. Sci. USA 97: 12980–12984.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik B.E., Carrière, Y., Dennehy, T. J., Morin, S., Sisterson, M. S., Roush, R. T., Shelton, A. M., and Zhao, J. Z. 2003. Insect Resistance to Transgenic Bt Crops: Lessons from the laboratory and field. J. Econ. Entomol. 96:1031–1038.

    PubMed  CAS  Google Scholar 

  • Tabashnik, B. E., Gassman, A. J., Crowder, D. W., and Carriere, Y. 2008. Field evolved resistance to Bt toxins. Nat. Biotech. 26(10): 174–176

    Google Scholar 

  • Whalon, M.E. and Wingerd, B.A. 2003. Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54: 200–211.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, M.C., Georghiou, G. P., and Federici, B. A. 1997. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefaciatus. Proc. Natl. Acad. Sci. USA 94:10536–10540.

    Article  PubMed  CAS  Google Scholar 

  • Woods, H. A. 1999. Patterns and mechanisms of growth of fifth-instar Manduca sexta caterpillars following exposure to low-or high-protein food during early instars. Physiol. Biochem. Zool. 72:445–454.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Nancy Adams, Monsanto Co., Union City, TN for providing H. zea; Arthur Appel, Dept of Entomology, Auburn University for providing statistical guidance; and Marianne Carey, Case Western Reserve University, for providing purified Cry1Ac toxin. This research was partially supported by USDA, and Cotton Incorporated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Moar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anilkumar, K.J., Sivasupramaniam, S., Head, G. et al. Synergistic Interactions Between Cry1Ac and Natural Cotton Defenses Limit Survival of Cry1Ac-resistant Helicoverpa Zea (Lepidoptera: Noctuidae) on Bt Cotton. J Chem Ecol 35, 785–795 (2009). https://doi.org/10.1007/s10886-009-9665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9665-x

Keywords

Navigation