Skip to main content
Log in

Myzus persicae is Arrested More by Blends Than by Individual Compounds Elevated in Headspace of PLRV-Infected Potato

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Volatiles from potato plants (Solanum tuberosum L.) infected with Potato leaf roll virus (PLRV) attract and arrest the principal vector of PLRV, the green peach aphid, Myzus persicae (Sulzer), more strongly than volatiles from non-infected plants. The total concentration of volatiles detectable in the headspace of PLRV-infected plants is greater than that in the headspace of non-infected controls, and the relative composition is altered. To determine the basis of the aphid response to PLRV-infection-induced volatiles from potato, behavioral bioassays were conducted. We measured arrestment of aphids by individual components, by synthetic blends of these, and by a naturally occurring blend by using an emigration rate bioassay, and quantified observations of the behavior of individual aphids. The components tested were those elevated at least twofold in response to PLRV infection. Before conducting the behavioral bioassays, electroantennograms confirmed the electrophysiological responses of aphids to the components of the blend. For bioassays, individual compounds or blends were tested by applying them in solution to paper strips at concentrations designed to mimic those present in the headspace of the plants. All bioassays were conducted by placing aphids on fine-mesh screening positioned above treated paper strips. Arrestment was measured by placing groups of 30 aphids directly over the treated strips and counting the number moving away at 10-min intervals for 50 min. Among the individual compounds tested, only β-pinene was a mild arrestant. The other compounds did not elicit significant changes in arrestment or behavior at a range of physiologically relevant concentrations. In contrast, synthetic blends that mimicked the concentration and composition present in headspace of PLRV-infected potato plants arrested aphids significantly more strongly than blends mimicking volatiles from the headspace of non-infected plants. The naturally occurring blend collected from headspace of PLRV-infected plants also arrested M. persicae more strongly than the blend collected from headspace of non-infected plants. Aphid behavior was quantified by directly observing individual aphids and recording their activities during a 5-min period on screening above strips treated with test materials. Few differences in time budgets were observed among aphids exposed to individual components, but synthetic blends and trapped headspace volatiles from PLRV-infected plants resulted in significantly less time spent walking by aphids than synthetic blends and trapped headspace from non-infected controls. Our results indicate that arrestment of M. persicae by PLRV-infected plants requires the blend of volatile organic compounds released by these plants and is not produced in response to a single compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arn, H., Guerin, P. M., Buser, H.-R., Rauscher, S., and Mani, E. 1985. Sex pheromone blend of the codling moth, Cydia pomonella: evidence for a behavioural role of dodecan-1-ol. Experientia 41:1482–1484.

    Article  CAS  Google Scholar 

  • Bernays, E. A., and Funk, D. 1999. Specialists make faster decisions than generalists: experiments with aphids. Proc. R. Soc. Lond., B. 266:151–156.

    Article  Google Scholar 

  • Campbell, C. A. M., Dawson, G. W., Griffiths, D. C., Pettersson, J., and Pickett, J. A. 1990. Sex attractant pheromone of damson-hop aphid Phorodon humuli (Homoptera: Aphididae). J. Chem. Ecol. 16:3455–3465.

    Article  CAS  Google Scholar 

  • Cardoza, Y. J., Alborn, H. T., and Tumlinson, J. H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Castle, S. J., and Berger, P. H. 1993. Rates of growth and increase of Myzus persicae on virus infected potatoes according to type of virus–vector relationship. Entomol. Exp. Appl. 69:51–60.

    Article  Google Scholar 

  • Castle, S. J., Mowry, T. M., and Berger, P. H. 1998. Differential settling by Myzus persicae (Homoptera: Aphididae) on various virus infected host plants. Ann. Entomol. Soc. Am. 91:661–667.

    Google Scholar 

  • Chapman, R. F., Berneys, E. A., and Simpson, S. J. 1981. Attraction and repulsion of the aphid Cavariella aegopodii, by plant odours. J. Chem. Ecol. 7:881–888.

    Article  Google Scholar 

  • Chaudry, Z., Yoshioka, T., Satoh, S., Hase, S., and Ehara, Y. 1998. Stimulated ethylene production in tobacco (Nicotiana tabacum L. cv Ky 57) leaves infected systemically with cucumber mosaic virus yellow strain. Plant Sci. 131:123–130.

    Article  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–574.

    Article  Google Scholar 

  • Dicke, M. 1999. Specificity of herbivore-induced plant defences, pp 43–53, in N. Foundation (ed.). Insect–Plant Interactions and Induced Plant Defense—Novartis Foundation Symposium 223. John Wiley & Sons, Chichester.

    Google Scholar 

  • Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. 1990. Isolation and identification of volatile kairomones that affect acarine predator–prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381–396.

    Article  CAS  Google Scholar 

  • Du, Y.-J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 22:1591–1605.

    Article  Google Scholar 

  • Eigenbrode, S. D., Barnard, J., and Shelton, A. M. 1989. A system for quantifying behavior of neonate caterpillars and other small, slow-moving animals. Can. Entomol. 121:1125–1126.

    Article  Google Scholar 

  • Eigenbrode, S. D., Ding, H., Shiel, P., and Berger, P. H. 2002. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. Lond., B 269:455–460.

    Article  CAS  Google Scholar 

  • Fraser, A., Mechaber, W. L., and Hildebrand, J. G. 2003. Electroantennographic and behavioral responses of the Sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 29:1813–1833.

    Article  PubMed  CAS  Google Scholar 

  • Gouinguené, S. P., and Turlings, T. C. J. 2005. Antennal electrophysiological responses of three parasitic wasps to the caterpillar-induced volatiles from maize, cowpea and cotton. J. Chem. Ecol. 31:1023–1038.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, J., and Park, K. C. 1998. An improved aphid electroantennogram. J. Insect Physiol. 44:919–928.

    Article  PubMed  Google Scholar 

  • Hardie, J., and Powell, G. 2000. Close-up video combined with electronic monitoring of plant penetration and behavioral effects of an aphid antifeedant, pp 201–211, in G. P. Walker and E. A Backus (eds.). Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior. Thomas Say Publ./ESA, Lanham, M.D.

    Google Scholar 

  • Hardie, J., Visser, J. H., and Piron, P. G. M. 1995. Peripheral odor perception by adult aphid forms with the same genotype but different host plant preferences. J. Insect Physiol. 41:91–97.

    Article  CAS  Google Scholar 

  • Harrison, B. D. 1984. Potato leafroll virus. CMI/AAB description of plant viruses 291. Association of Applied Biologists, Warwick, UK.

    Google Scholar 

  • Huang, J., Schmelz, E. A., Alborn, H., Engelberth, J., and Tumlinson, J. H. 2005. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: The role of ethylene in Pseudomonas syringae infected tobacco. J. Chem. Ecol. 31:439–459.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H., and Eigenbrode, S. D. 2004. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ. Entomol. 33:1207–1216.

    Google Scholar 

  • Kennedy, J. S., Booth, C. O., and Kershaw, W. J. S. 1959a. Host finding by aphids in the field. I. Gynoparae of Myzus persicae (Sulzer). Ann. Appl. Biol. 47:410–423.

    Google Scholar 

  • Kennedy, J. S., Booth, C. O., and Kershaw, W. J. S. 1959b. Host finding by aphids in the field. II. Aphis fabae Scop. (gynoparae) and Brevicoryne brassicae L.; with a re-appraisal of the role of host finding behaviour in virus spread. Ann. Appl. Biol. 47:424–444.

    Article  Google Scholar 

  • Kessler, A., and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Linn, C. E., Campbell, M. G., and Roelofs, W. L. 1986. Male moth sensitivity to multicomponent pheromones: critical role of female-released blend in determining the functional role of components and active space of the pheromone. J. Chem. Ecol. 12:659–668.

    Article  CAS  Google Scholar 

  • McElhany, P., Real, L. A., and Power, A. G. 1995. Vector preference and disease dynamics: A study of Barley yellow dwarf virus. Ecology 76:444–457.

    Article  Google Scholar 

  • McLeod, G., Gries, R., Von Reub, S. H., Rahe, J. E., Mcintosh, R., Konig, W. A., and Gries, G. 2005. The pathogen causing dutch elm disease makes host trees attract insect vectors. Proc. R. Soc. Lond., B. 272:2499–2503.

    Article  Google Scholar 

  • Nottingham, S. F., and Hardie, J. 1993. Flight behavior of the black bean aphid, Aphis fabae, and the cabbage aphid, Brevicoryne brassicae, in host and non-host plant odor. Physiol. Entomol. 18:389–394.

    Article  Google Scholar 

  • Nottingham, S. F., Hardie, J., Dawson, G. W., Hick, A. J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1991. Behavioral and electrophysiological responses of aphids to host and non-host plant volatiles. J. Chem. Ecol. 17:1231–1242.

    Article  CAS  Google Scholar 

  • Paré, P. W., Lewis, W. J., and Tumlinson, J. H. 1999. Induced plant volatiles: biochemistry and effects on parasitoids, pp 167–180, in A. A. Agrawal, S. Tuzun and E. Bent (eds.). Induced Plant Defenses against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Park, K. C., and Hardie, J. 1998. An improved aphid electroantennogram. J. Insect Physiol. 44:919–928.

    Article  PubMed  CAS  Google Scholar 

  • Petterson, J. 1970. Studies on Rhopalosiphum padi (L.): Laboratory studies on olfactometric responses to the winter host Prunus padus L. Lantbrukhoegsk. Ann. 36:381–399.

    Google Scholar 

  • Petterson, J. 1973. Olfactory reactions of Brevicoryne brassicae (L.) (Hom.: Aph.). Swed. J. Agric. Res. 3:95–103.

    Google Scholar 

  • Petterson, J., Pickett, J. A., Pye, B. J., Quiroz, A., Smart, L. E., Wadhams, L. J., and Woodcock, C. M. 1994. Winter host component reduces colonization of summer hosts by the bird cherry-oat aphid, Rhopalosiphum padi (L.). and other aphids in cereal fields. J. Chem. Ecol. 20:2565–2574.

    Article  Google Scholar 

  • Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67–90.

    Article  CAS  Google Scholar 

  • Powell, G., Tosh, C. R., and Hardie, J. 2006. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 5:309–330.

    Article  CAS  Google Scholar 

  • Quiroz, A., and Niemeyer, H. M. 1998. Olfactometer assessed responses of the aphid Rhopalosiphum padi to wheat and oat volatiles. J. Chem. Ecol. 24:113–124.

    Article  CAS  Google Scholar 

  • Silverstein, R. M., and Young, J. C. 1976. Insects generally use multicomponent pheromones, pp 1–20, in M. Berozo (ed.). Pest Management with Insect Attractants. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Srinivasan, R., Alvarez, J. M., Eigenbrode, S. D., and Bosque-Pérez, N. A. 2006. Influence of hairy nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus (Luteoviridae: Poleovirus) on the host preference of Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ. Entomol. 35:546–553.

    Article  Google Scholar 

  • Syller, J. 1996. Potato leafroll virus (PLRV): its transmission and control. IPM Rev. 1:217–227.

    Google Scholar 

  • Tosh, C. R, Powell, G., and Hardie, J. 2003. Decision making by generalist and specialist aphids with the same genotype. J. Insect Physiol. 49:659–669.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C., and Fritzsche, M. E. 1999. Attraction of parasitic wasps by caterpillar-damaged plants, pp 21–30, in N. Foundation (ed.). Insect–Plant Interactions and Induced Plant Defense—Novartis Foundation Symposium 223. John Wiley & Sons, Chichester.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveous, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson) to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Article  CAS  Google Scholar 

  • Van Giessen, W. A., Fescemyer, H. W., Burrows, P. M., Peterson, J. K., and Barnett, O. W. 1994. Quantification of electroantennogram responses of the primary rhinaria of the Acyrthosiphon pisum (Harris) to C4–C8 primary alcohols and aldehydes. J. Chem. Ecol. 20:909–927.

    Article  Google Scholar 

  • Vargas, R. R., Troncoso, A. H., Tapia, D. H., Olivares-Donoso, R., and Niemeyer, H. M. 2005. Behavioral differences during host selection between alate virginoparae of generalist and tobacco-specialist Myzus persicae. Entomol. Exp. Appl. 116:43–53.

    Article  Google Scholar 

  • Visser, J. H., and Piron, P. G. M. 1995. Olfactory antennal responses to plant volatiles in apterous virginoparae of the vetch aphid Megoura viciae. Entomol. Exp. Appl. 77:37–46.

    Article  CAS  Google Scholar 

  • Visser, J. H., and Piron, P. G. M. 1997. Odour response profiles in aphids differentiating for species clone, form and food. Proc. Exp. Appl. Entomol., N.E.V. (Amsterdam) 8:115–118.

    Google Scholar 

  • Visser, J. H., and Yan, F.-S. 1995. Electroantennogram responses of the grain aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walk.) (Hom., Aphididae) to plant odour components. J. Appl. Entomol. 119:539–542.

    Article  Google Scholar 

  • Visser, J. H., Piron, P. G. M., and Hardie, J. 1996. The aphids’ peripheral perception of plant volatiles. Entomol. Exp. Appl. 80:35–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by USDA-NRI Competitive Grant No.: 2003-35302-13354. We thank William Price for statistical assistance, and Brent Werner, Karla Medina-Ortega, and Melia Nafus for technical assistance. This is a publication of the Idaho Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford D. Eigenbrode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngumbi, E., Eigenbrode, S.D., Bosque-Pérez, N.A. et al. Myzus persicae is Arrested More by Blends Than by Individual Compounds Elevated in Headspace of PLRV-Infected Potato. J Chem Ecol 33, 1733–1747 (2007). https://doi.org/10.1007/s10886-007-9340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9340-z

Keywords

Navigation