Skip to main content
Log in

Investigation of the Thermal Properties of a Series of Copper Selenide Cluster Molecules

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The thermal properties of a series of the six copper selenide cluster molecules [Cu26Se13(PEt2R)14] (R = Ph, Et), [Cu44Se22(PEt2Ph)18], [Cu70Se35(PEt2R)23] (R = Ph, Et) and [Cu140Se70(PEt3)34] have been investigated along with a characterization of their thermolysis products. For all cluster molecules the phosphine ligand shells are cleaved at temperatures between 60°C and 200°C depending on the experimental conditions (Helium gas flow or vacuum), the type of phosphine ligand and the size of the cluster molecules. The residues of the thermal treatment to 150°C were found to be nanostructured Cu2Se with crystallite sizes of approximately 12–16 nm which means that the 1–2.5 nm sized cluster cores of the precursor cluster molecules simultaneously grow during this process. A mixture of processes and factors including the strength of the Cu–P bond, the boiling point of the phosphine ligand as well as the thermal stability of the copper selenide clusters against formation of the bulk material determine the shape of the TGA curves. We found some indications in the TGA along with differential scanning calorimetry (DSC), which suggest that the cleavage of the phosphine ligands is probably mostly determined by the tendency of the metastable clusters to form the bulk material meaning their thermodynamic stability and not by the strength of the Cu–P bond. The data for the series of PEt3 ligated clusters reveal that this stability is dependent on the size of the cluster molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. G. Schmid (eds) (2004) Nanoparticles: From Theory to Application. Wiley-VCH, Weinheim

    Google Scholar 

  2. Schmid G. (eds) (1995) Clusters and Colloids. VCH, Weinheim

    Google Scholar 

  3. H. Krautscheid, D. Fenske, G. Baum, and M. Semmelmann (1993). Angew. Chem. 105, 1364; (1993) Angew. Chem. Int. Ed. Engl. 32, 1303

    Google Scholar 

  4. D. Fenske, N. Zhu, and T. Langetepe (1998). Angew. Chem. 110, 2783; (1998) Angew. Chem. Int. Ed. Engl. 37, 2639

    Google Scholar 

  5. X.-J. Wang, T. Langetepe, C. Persau, B.-S. Kang, G. M. Sheldrick, and D. Fenske (2002). Angew. Chem. 114, 3972; (2002) Angew. Chem. Int. Ed. Engl. 41, 3818

    Google Scholar 

  6. D. Fenske, C. Persau, S. Dehnen, and Ch. A. Anson (2004). Angew. Chem. 116, 308; (2004) Angew. Chem. Int. Ed. Engl. 43, 305

    Google Scholar 

  7. S. Dehnen, A. Schäfer, D. Fenske, and R. Ahlrichs (1994). Angew. Chem. 106, 786; (1994) Angew. Chem. Int. Ed. Engl. 33, 746

    Google Scholar 

  8. Schäfer A., Ahlrichs R. (1994) J. Am. Chem. Soc. 116: 10686

    Article  Google Scholar 

  9. Dehnen S., Schäfer A., Ahlrichs R., Fenske D. (1996) Chem. Eur. J. 2: 429

    CAS  Google Scholar 

  10. J. F.Corrigan and D. Fenske (1997). Angew. Chem. 109, 2070; (1997) Angew. Chem. Int. Ed. Engl. 36, 1981

  11. A. Eichhöfer and E. Tröster (2002). Eur. J. Inorg. Chem. 2253

  12. A. Eichhöfer and P. Deglmann (2004). Eur. J. Inorg. Chem. 349

  13. Eichhöfer A., Beckmann E., Fenske D., Herein D., Krautscheid H., Schlögl R. (2001) Isr. J. Chem. 41: 31

    Article  Google Scholar 

  14. van der Putten D., Olevano D., Zanoni R., Krautscheid H., Fenske D. (1995) J. Electron. Spectrosc. Relat. Phenom. 76: 207–211

    Article  Google Scholar 

  15. A. Deveson, S. Dehnen, and D. Fenske (1997). J. Chem. Soc., Dalton Trans. 4491

  16. S. Dehnen and D. Fenske (1994). Angew. Chem. 106, 2369; (1994) Angew. Chem. Int. Ed. Engl. 33, 2287

    Google Scholar 

  17. D. Fenske and H. Krautscheid (1990). Angew. Chem. 102, 1513; (1990) Angew. Chem. Int. Ed. Engl. 29, 1452

    Google Scholar 

  18. N. Zhu and D. Fenske (1999). J. Chem. Soc., Dalton Trans. 1067

  19. S. Dehnen, A. Eichhöfer, and D. Fenske (2002). Eur. J. Inorg. Chem. 279

  20. Leyssens T., Peeters D., Guy Orpen A., Harvey J. N. (2005) New J. Chem. 29: 1424

    Article  CAS  Google Scholar 

  21. A. Eichhöfer, D. Fenske, and P. Scheer (2004). Eur. J. Inorg. Chem. 93

  22. In Powder diffraction file PDF-2 Database Sets 1–85, 1993, International Center for Diffraction Data, Newtown Square USA, File number 27-1131; A. L. N. Stevels, Philips Res. Rep. Suppl. 1969,9, 39–44

  23. Kashida S., Akai J. (1988) J. Phys. C: Solid State Phys. 21: 5329

    Article  CAS  Google Scholar 

  24. Yamamoto K., Kashida S. (1991) J. Solid State Chem. 93: 202

    Article  CAS  Google Scholar 

  25. D. A. Edwards and R. Richards (1997). J. Chem. Soc. Dalton Trans. 4491

  26. Schmidt H., Ruf H. (1963) Z. Anorg. Allg. Chem. 321: 270

    Article  CAS  Google Scholar 

  27. K. Sasse, Methoden der Organischen Chemie, Band 1, Houben-Weyl (ed.) (Thieme Verlag, Stuttgart, 1963), p. 32; H. D. Kaesz and F. G. Stone (1959). J. Org. Chem. 24, 635

  28. E. Keller, SCHAKAL 97, A Computer Program for the Graphic Representation of Molecular and Crystallographic Models, Universität Freiburg, 1997

  29. Peerson O. B., Wu X., Kustanovich I, Smith S. O. (1993) J. Magn. Reson., Ser. A 104(3): 33

    Google Scholar 

  30. A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshme, and R. G. Griffen (1995). J. Chem. Phys. 103, 6951

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Center of functional nanostructures) and the Natural Sciences and Engineering Research Council of Canada (JFC). We thank Frau Tröster for her valuable assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Eichhöfer.

Additional information

Dedicated to Prof. G. Schmid on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cave, D., Corrigan, J.F., Eichhöfer, A. et al. Investigation of the Thermal Properties of a Series of Copper Selenide Cluster Molecules. J Clust Sci 18, 157–172 (2007). https://doi.org/10.1007/s10876-006-0093-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-006-0093-6

Keywords

Navigation