Skip to main content
Log in

Mitochondrial ATP-Sensitive K+ Channels Prevent Oxidative Stress, Permeability Transition and Cell Death

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HD:

5-hydroxydecanoate

A.U.:

arbitrary units

CsA:

cyclosporin A

DZX:

diazoxide

H2DCF:

2′,7′-dichlorodihydro-fluorescein

H2DCFDA:

2′,7′-dichlorodihydrofluorescein diacetate

DCF:

2′,7′-dichlorofluorescein

mitoKATP:

mitochondrial ATP-sensitive K+ channels

MPT:

mitochondrial permeability transition

ROS:

reactive oxygen species

References

  • Ardehali, H., Chen, Z., Ko, Y., Mejia-Alvarez, R., and Marban, E. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 11880–11885.

    Article  CAS  PubMed  Google Scholar 

  • Auchampach, J. A., Grover, G. J., and Gross, G. J. (1992). Cardiovasc. Res. 26, 1054–1062.

    CAS  PubMed  Google Scholar 

  • Belisle, E., and Kowaltowski, A. J. (2002). J. Bioenerg. Biomembr. 34, 285–298.

    Article  CAS  PubMed  Google Scholar 

  • Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., and Parker, N. (2004). Free Radic. Biol. Med. 37, 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, R., Gant, V. A., and Yellon, D. M. (2001). Cardiovasc. Res. 51, 691–700.

    Article  CAS  PubMed  Google Scholar 

  • Claycomb, W. C., Lanson, N. A. Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., and Izzo, N. J. Jr. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 2979–2984.

    CAS  PubMed  Google Scholar 

  • da Silva, M. S., Sartori, A., Belisle, E., and Kowaltowski, A. J. (2003). Am. J. Physiol. Heart Circ. Physiol. 285, H154–H162.

    CAS  PubMed  Google Scholar 

  • Dos Santos, P., Kowaltowski, A. J., Laclau, M. N., Seetharaman, S., Paucek, P., Boudina, S., Thambo, J. B., Tariosse, L., Bonoron-Adèle, S., and Garlid, K. D. (2002). Am. J. Physiol. Heart Circ. Physiol. 283, H296–H301.

    PubMed  Google Scholar 

  • Ferranti, R., da Silva, M. M., and Kowaltowski, A. J. (2003). FEBS Lett. 536, 51–55.

    CAS  PubMed  Google Scholar 

  • Forbes, R. A., Steenbergen, C., and Murphy, E. (2001). Circ. Res. 88, 802–809.

    CAS  PubMed  Google Scholar 

  • Garlid, K. D., Dos Santos, P., Xie, Z. J., Costa, A. D. T., and Paucek, P. (2003). Biochim. Biophys. Acta 1606, 1–21.

    CAS  PubMed  Google Scholar 

  • Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., D’Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J. (1997). Circ. Res. 81, 1072–1082.

    CAS  PubMed  Google Scholar 

  • Grijalba, M. T., Vercesi, A. E., and Schreier, S. (1999). Biochemistry 38, 13279–13287.

    CAS  PubMed  Google Scholar 

  • Gross, G. J. (2003). J. Mol. Cell. Cardiol. 35, 1005–1007.

    CAS  PubMed  Google Scholar 

  • Gross, G. J., and Auchampach, J. A. (1992). Circ. Res. 70, 223–233.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M. (1997). Mol. Cell. Biochem. 174, 167–172.

    CAS  PubMed  Google Scholar 

  • Halestrap, A. P., Kerr, P. M., Javadov, S., and Woodfield, K. Y. (1998). Biochim. Biophys. Acta 1366, 79–94.

    CAS  PubMed  Google Scholar 

  • Hausenloy, D. J., Duchen, M. R., and Yellon, D. M. (2003). Cardiovasc. Res. 60, 617–625.

    CAS  PubMed  Google Scholar 

  • Hausenloy, D. J., Yellon, D. M., Mani-Babu, S., and Duchen, M. R. (2004). Am. J. Physiol. Heart Circ. Physiol. 287, H841–H849.

    CAS  PubMed  Google Scholar 

  • Hoerter, J., Gonzalez-Barroso, M. D., Couplan, E., Mateo, P., Gelly, C., Cassard-Doulcier, A. M., Diolez, P., and Bouillaud, F. (2004). Circulation 110, 528–533.

    CAS  PubMed  Google Scholar 

  • Holmuhamedov, E. L., Jahangir, A., Oberlin, A., Komarov, A., Colombini, M., and Terzic, A. (2004). FEBS Lett. 568, 167–170.

    CAS  PubMed  Google Scholar 

  • Holmuhamedov, E. L., Wang, L., and Terzic, A. (1999). J. Physiol. 519, 347–360.

    CAS  PubMed  Google Scholar 

  • Ishida, H., Hirota, Y., Genka, C., Nakazawa, H., Nakaya, H., and Sato, T. (2001). Circ. Res. 89, 856–858.

    CAS  PubMed  Google Scholar 

  • Jaburek, M., Yarov-Yarovoy, V., Paucek, P., and Garlid, K. D. (1998). J. Biol. Chem. 273, 13578–13582.

    CAS  PubMed  Google Scholar 

  • Karsten, U. (1980). Experientia 36, 263–264.

    CAS  PubMed  Google Scholar 

  • Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997). FEBS Lett. 416, 14–18.

    Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (2001a). FEBS Lett. 495, 12–15.

    CAS  Google Scholar 

  • Kowaltowski, A. J., Seetharaman, S., Paucek, P., and Garlid, K. D. (2001b). Am. J. Physiol. Heart Circ. Physiol. 280, H649–H657.

    CAS  Google Scholar 

  • Kowaltowski, A. J., and Vercesi, A. E. (1999). Free Radic. Biol. Med. 26, 463–471.

    CAS  PubMed  Google Scholar 

  • Krenz, M., Oldenburg, O., Wimpee, H., Cohen, M. V., Garlid, K. D., Critz, S. D., Downey, J. M., and Benoit, J. N. (2002). Basic Res. Cardiol. 97, 365–373.

    CAS  PubMed  Google Scholar 

  • Laclau, M. N., Boudina, S., Thambo, J. B., Tariosse, L., Gouverneur, G., Bonoron-Adèle, S., Saks, V. A., Garlid, K. D., and Dos Santos, P. (2001). J. Mol. Cell. Cardiol. 33, 947–956.

    CAS  PubMed  Google Scholar 

  • Lebuffe, G., Schumacker, P. T., Shao, Z. H., Anderson, T., Iwase, H., and Vanden Hoek, T. L. (2003). Am. J. Physiol. Heart Circ. Physiol. 284, H299–H308.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Sato, T., Seharaseyon, J., Szewczyk, A., O’Rourke, B., and Marban, E. (1999). Ann. NY Acad. Sci. 874, 27–37.

    CAS  PubMed  Google Scholar 

  • Marber, M. S. (2000). Circ. Res. 86, 926–931.

    CAS  PubMed  Google Scholar 

  • Mattiasson, G., Shamloo, M., Gido, G., Mathi, K., Tomasevic, G., Yi, S., Warden, C. H., Castilho, R. F., Melcher, T., Gonzalez-Zulueta, M., Nikolich, K., and Wieloch, T. (2003). Nat. Med. 9, 1062–1068.

    CAS  PubMed  Google Scholar 

  • Miwa, S., and Brand, M. D. (2003). Biochem. Soc. Trans. 31, 1300–1301.

    CAS  PubMed  Google Scholar 

  • Murata, M., Akao, M., O’Rourke, B., and Marban, E. (2001). Circ. Res. 89, 891–898.

    CAS  PubMed  Google Scholar 

  • Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E., and Fiskum, G. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 9893–9898.

    CAS  PubMed  Google Scholar 

  • Murry, C. E., Jennings, R. B., and Reimer, K. A. (1986). Circulation 74, 1124–1136.

    CAS  PubMed  Google Scholar 

  • Ockaili, R. A., Bhargava, P., and Kukreja, R. C. (2001). Am. J. Physiol. Heart Circ. Physiol. 280, H2406–H2411.

    CAS  PubMed  Google Scholar 

  • O’Rourke, B. (2004). Circ. Res. 94, 420–432.

    CAS  PubMed  Google Scholar 

  • Ozcan, C., Bienengraeber, M., Dzeja, P. P., and Terzic, A. (2002). Am. J. Physiol. Heart Circ. Physiol. 282, H531–H539.

    CAS  PubMed  Google Scholar 

  • Rego, A. C., Vesce, S., and Nicholls, D. G. (2001). Cell Death Differ. 8, 995–1003.

    CAS  PubMed  Google Scholar 

  • Rodrigo, G. C., Lawrence, C. L., and Standen, N. B. (2002). J. Mol. Cell. Cardiol. 34, 555–569.

    CAS  PubMed  Google Scholar 

  • Seymour, E. M., Wu, J. S., Kovach, M. A., Romano, M. A., Jonathan, R. T., Claycomb, W. C., and Bolling, S. F. (2003). J. Surg. Res. 114, 187–194.

    CAS  PubMed  Google Scholar 

  • Starkov, A. A. (1997). Biosci. Rep. 17, 273–279.

    CAS  PubMed  Google Scholar 

  • Takasaki, Y., Wolff, R. A., Chien, G. L., and van Winkle, D. M. (1999). Am. J. Physiol. Heart Circ. Physiol. 277, H2442–H2450.

    CAS  Google Scholar 

  • Tunstall-Pedoe, H., Kuulasmaa, K., Mahonen, M., Tolonen, H., Ruokokoski, E., and Amouyel, P. (1999). Lancet 353, 1547–1557.

    CAS  PubMed  Google Scholar 

  • Vanden Hoek, T. L., Becker, L. B., Shao, Z., Li, C., and Schumacker, P. T. (1998). J. Biol. Chem. 273, 18092–18098.

    CAS  PubMed  Google Scholar 

  • Vanden Hoek, T. L., Becker, L. B., Shao, Z., Li, C., and Schumacker, P. T. (2000). Circ. Res. 86, 541–548.

    CAS  PubMed  Google Scholar 

  • Zhang, D. X., Chen, Y., Campbell, W. B., Zou, A., Gross, G. J., and Li, P. (2001). Circ. Res. 89, 1177–1183.

    CAS  PubMed  Google Scholar 

  • Zoratti, M., and Szabo, I. (1995). Biochim. Biophys. Acta 1241, 139–176.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Kowaltowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facundo, H.T.F., de Paula, J.G. & Kowaltowski, A.J. Mitochondrial ATP-Sensitive K+ Channels Prevent Oxidative Stress, Permeability Transition and Cell Death. J Bioenerg Biomembr 37, 75–82 (2005). https://doi.org/10.1007/s10863-005-4130-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-4130-1

Keywords

Navigation