Skip to main content
Log in

Investigation on the formation mechanism of p-type ZnO:In-N thin films: experiment and theory

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effects of post-annealing on electrical properties of N+ ion-implanted into indium doped ZnO (ZnO:In-N) films are investigated. p-type conduction of ZnO:In-N films with the appropriate annealing have been confirmed by Hall-effect measurements and electrical rectification behavior of homojunctions. The transmitted spectra and temperature-dependent photoluminescence (PL) spectroscopy results show that the band gap of p-type ZnO:In-N is narrow as compared to ZnO:In and the ionization acceptor energy is estimated to be 128 meV, which agrees well with our calculated transition levels \(\varepsilon \left( {0/ - 1} \right)\) of InZn-2NO. X-ray photoelectron spectroscopy (XPS) spectra confirm the dominant existence of N-related acceptor defect complexes in p-type samples. Combining with transition state calculations, we find that the incorporation of In can facilitate p-type effective doping by pinning a passive impurity band above the valence band maximum (VBM) and decreasing thermal activation energy of N interstitial (Ni) in ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.S. Liu, C.X. Shan, B.H. Li, Z.Z. Zhang, K.W. Liu, D.Z. Shen, Opt. Lett. 38, 2113 (2013)

    Article  Google Scholar 

  2. H.H. Huang, S.Y. Chu, P.C. Kao, Y.C. Chen, M.R. Yang, Z.L. Tseng, J. Alloys Compd. 479, 520 (2009)

    Article  Google Scholar 

  3. U.V. Desnica, Prog. Cryst. Growth Charact. Mater. 36, 291 (1998)

    Article  Google Scholar 

  4. A.Y. Azarov, A. Hallén, X.L. Du, P. Rauwel, B.G. Svensson, A.Y. Kuznetsov, J. Appl. Phys. 115, 073512 (2014)

    Article  Google Scholar 

  5. J.L. Lyons, A. Janotti, C.G. Van de Walle, J. Appl. Phys. 115, 012014 (2014)

    Article  Google Scholar 

  6. S. Sakong, J. Gutjahr, P. Kratzer, J. Chem. Phys. 138, 234702 (2013)

    Article  Google Scholar 

  7. G. Perillat-Merceroz, P. Gergaud, P. Marotel, S. Brochen, P.H. Jouneau, G. Feuillet, J. Appl. Phys. 109, 023513 (2011)

    Article  Google Scholar 

  8. M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, H. Wang, Appl. Phys. Lett. 101, 112101 (2012)

    Article  Google Scholar 

  9. T.H. Vlasenflin, M. Tanaka, Solid State Commun. 142, 292 (2007)

    Article  Google Scholar 

  10. M. Chen, Y. Zhu, X. Ji, A. Chen, L. Su, Z. Shen, C. Yang, R. Xiang, X. Gui, F. Huang, Z. Tang, J Alloys. Compd. 622, 719 (2015)

    Article  Google Scholar 

  11. Z.Z. Ye, L.L. Chen, B.H. Zhao, H.P. He, Appl. Phys. Lett. 92, 231913 (2008)

    Article  Google Scholar 

  12. Q. Wang, S.J. Park, D.M. Shin, H.K. Kim, Y.H. Hwang, Y. Zhang, X. Li, J. Korean Phys. Soc. 65, 1890 (2014)

    Article  Google Scholar 

  13. X.M. Duan, C. Stampfl, M.M.M. Bilek, D.R. McKenzie, S.-H. Wei, Phys. Rev. B 83, 085202 (2011)

    Article  Google Scholar 

  14. Y. Yan, J. Li, S.-H. Wei, M.M. Al-Jassim, Phys. Rev. Lett. 98, 135506 (2007)

    Article  Google Scholar 

  15. C.Y. Kong, G.P. Qin, H.B. Ruan, M. Nan, R.J. Zhu, T.L. Dai, Chin. Phys. Lett. 25, 1128 (2008)

    Article  Google Scholar 

  16. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  18. G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113, 9901 (2000)

    Article  Google Scholar 

  19. A. Janotta, M. Schmidt, R. Janssen, M. Stutzmann, Phys. Rev. B 68, 165207 (2003)

    Article  Google Scholar 

  20. W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, L. Fang, X.D. Meng, H. Zhang, P. Zhang, Q. Xu, J. Phys. Chem. C 118, 22799 (2014)

    Article  Google Scholar 

  21. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, Opt. Commun. 239, 275 (2004)

    Article  Google Scholar 

  22. L.J. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)

    Article  Google Scholar 

  23. J.C. Li, Y.F. Li, B. Yao, Y. Xu, S.W. Long, L. Liu, Z.Z. Zhang, L.G. Zhang, H.F. Zhao, D.Z. Shen, J. Chem. Phys. 138, 034704 (2013)

    Article  Google Scholar 

  24. E. Kurtz, S. Einfeldt, J. Nürnberger, S. Zerlauth, D. Hommel, G. Landwehr, Phys. Stat. Sol. B 187, 393 (1995)

    Article  Google Scholar 

  25. H.P. Gislason, B.H. Yang, M. Linnarsson, Phys. Rev. B 47, 9418 (1993)

    Article  Google Scholar 

  26. S. Lautenschlaeger, S. Eisermann, G. Haas, E.A. Zolnowski, M.N. Hofmann, A. Laufer, M. Pinnisch, B.K. Meyer, M.R. Wagner, J.S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, M. Koch, Phys. Rev. B 85, 235204 (2012)

    Article  Google Scholar 

  27. B.I. Shklovskii, A.L. Efros, Springer Sci. Bus. Media 45 (2013)

  28. L. Liu, J.L. Xu, D.D. Wang, M.M. Jiang, S.P. Wang, B.H. Li, Z.Z. Zhang, D.X. Zhao, C.X. Shan, B. Yao, D.Z. Shen, Phys. Rev. Lett. 108, 215501 (2012)

    Article  Google Scholar 

  29. H. Zhang, C. Kong, W. Li, G. Qin, H. Ruan, M. Tan, J. Mater. Sci. 27, 5251 (2016)

    Google Scholar 

  30. M. Ding, D.X. Zhao, B. Yao, B.H. Li, Z.Z. Zhang, D.Z. Shen, Appl. Phys. Lett. 98, 062102 (2011)

    Article  Google Scholar 

  31. H.B. Ruan, L. Fang, G.P. Qin, T.Y. Yang, W.J. Li, F. Wu, M. Saleema, C.Y. Kong, Solid State Commun. 152, 1625 (2012)

    Article  Google Scholar 

  32. J. Furthmüller, F. Hachenberg, A. Schleife, D. Rogers, F. Hosseini Teherani, F. Bechstedt, Appl. Phys. Lett. 100, 022107 (2012)

    Article  Google Scholar 

  33. C.L. Perkins, S.H. Lee, X.N. Li, S.E. Asher, T.J. Coutt, J. Appl. Phys. 97, 034907 (2005)

    Article  Google Scholar 

  34. H. Zhang, C. Kong, W. Li, G. Qin, M. Tan, H. Ruan, L. Fang, J. Mater. Sci. 28, 9316 (2017)

    Google Scholar 

  35. M. Tan, C.Y. Kong, W.J. Li, H. Zhang, H.B. Ruan, D. Wang, J. Wang, Sci Sin Phys Mech Astron 48, 047303 (2018)

    Article  Google Scholar 

  36. W. Li, C. Kong, H. Ruan, G. Qin, L. Fang, X. Meng, H. Zhang, P. Zhang, Q. Xu, J. Phys. Chem. 118, 22799 (2014)

    Google Scholar 

  37. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51472038 and 51502030), the Nature Science Foundation of Chongqing City (Grant Nos. CSTC2016jcyjA, 2018jcyjA2923), Education Commission Foundation of Chongqing (Grant No. KJ1500319, 1501112, 1600314), the Dr. Scientific Research Fund of Chongqing normal university (Grant No. 16XlB002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G.P., Zhang, H., Li, W.J. et al. Investigation on the formation mechanism of p-type ZnO:In-N thin films: experiment and theory. J Mater Sci: Mater Electron 30, 6059–6064 (2019). https://doi.org/10.1007/s10854-019-00906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00906-z

Navigation