Skip to main content
Log in

Sintering behaviors and microwave dielectric properties of Ti-modified Ba3Ti5Nb6O28 ceramics with 35BaO–35ZnO–30B2O3 addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of 35BaO–35ZnO–30B2O3 (BZB) addition on the sintering behaviors, phase evolution and microwave dielectric properties of Ti-modified Ba3Ti5Nb6O28 (Ba3Ti5.1Nb5.9O27.95, BTNO) ceramics had been investigated. BZB addition effectively reduced the sintering temperature of BTNO from 1250 °C to about 900 °C. With increasing BZB addition, the crystal phase of the present ceramics changed from single phase Ba3Ti5Nb6O28 to mixing phases of Ba3Ti5Nb6O28 and Ba3Ti4Nb4O21. And the major phase gradually became from Ba3Ti5Nb6O28 to Ba3Ti4Nb4O21. Dielectric constant and temperature coefficient increased with the rising of BZB addition. But the Qf value gradually declined from 28000 to about 6000 GHz. The BTNO ceramics with 15% BZB addition exhibited excellent microwave dielectric properties as following: ε = 46.3, Qf = 5887 GHz and τf = 35.5 ppm/°C, which was potential of candidate materials for LTCC application. And the variation of microwave dielectric properties had been also discussed with the phase and microstructure evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.D. Zhang, D. Zhou, J. Am. Ceram. Soc. 99, 3645–3650 (2016)

    Article  Google Scholar 

  2. R. Ratheesh, H. Sreemoolanadhan, S. Suma, M.T. Sebastian, K.A. Jose, P. Mohanan, J. Mater. Sci. 9, 291–294 (1998)

    Google Scholar 

  3. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57–90 (2008)

    Article  Google Scholar 

  4. H.H. Xi, D. Zhou, B. He, H.D. Xie, J. Am. Ceram. Soc. 97, 1375–1378 (2014)

    Article  Google Scholar 

  5. X.H. Zhang, Y.M. Ding, J.J. Bian, J. Mater. Sci. 28, 12755–12760 (2017)

    Google Scholar 

  6. G. Zhang, J. Guo, L. He, D. Zhou, H. Wang, J. Koruza, M. Kosec., J. Am. Ceram. Soc. 97, 241–245 (2014)

    Article  Google Scholar 

  7. K. Song, P. Liu, H. Lin, W. Su, J. Jiang, S. Wu, J. Wu, Z. Ying, H. Qin, J. Eur. Am. Ceram. Soc. 36, 1167–1175 (2016)

    Article  Google Scholar 

  8. X. Huang, X. M. Li, D. P. Tang, X. H. Zheng, J. Mater. Sci: Mater. Electron. 26, 2033–2038 (2015)

    Google Scholar 

  9. S.S. Qin, X. Huang, X.H. Zheng, Glass Phys. Chem.16, 561–565 (2016)

    Article  Google Scholar 

  10. R. Ubic, I.M. Reaney, W.E. Lee, Int. Mater. Rev. 43, 205–219 (1998)

    Article  Google Scholar 

  11. X. Guo, B. Tang, J. Liu, H. Chen, S. Zhang, J. Alloys Compd. 646, 512–516 (2015)

    Article  Google Scholar 

  12. S. Banijamali, T. Ebadzadeh, J. Non-cryst. Solids, 441, 34–41 (2016)

    Article  Google Scholar 

  13. H.J. Lee, K.S. Hong, S.J. Kim, I.T. Kim, Mater. Res. Bull. 32, 847–855 (1997)

    Article  Google Scholar 

  14. R. Chaim, M. Levin, A. Shlayer, C. Estournes, Adv. Appl. Ceram. 107, 159–169 (2008)

    Article  Google Scholar 

  15. F. Amaral, M. A. Valente, L.C. Costa, J. Non-Cryst. Solids, 356, 822–827 (2010)

    Article  Google Scholar 

  16. D.W. Kim, T.G. Kim, K.S. Hong, Mater. Res. Bull. 34, 771–781 (1999)

    Article  Google Scholar 

  17. M.H. Kim, J.B. Lim, S. Nahm, J.H. Paik, H.J. Lee, J. Eur. Ceram. Soc. 27, 3033–3037 (2007)

    Article  Google Scholar 

  18. J. Gao, X. Wang, M. Wang, X. Wang, W. Lu, J. Mater. Sci. 27, 5954–5959 (2016)

    Google Scholar 

  19. M.Z. Jhou, J.H. Jean, J. Am. Ceram. Soc. 89, 786–791 (2006)

    Article  Google Scholar 

  20. L.F. Zhou, H.X. Lin, W. Chen, L. Luo, Jpn. J. Appl. Phys. 47, 7246–7249 (2008)

    Article  Google Scholar 

  21. G.L. Roberts, R.J. Cava, W.F. Peck, J.J. Karjewski, J. Mater. Res. 12, 526–530 (1997)

    Article  Google Scholar 

  22. M.T. Sebastian, J. Mater. Sci. 10, 475–478 (1999)

    Google Scholar 

  23. J.R. Kim, D.W. Kim, S.H. Yoon, K.S. Hong, J. Electro. Ceram. 17, 439–443 (2006)

    Article  Google Scholar 

  24. J.R. Kim, D.W. Kim, I.S. Cho, B.S. Kim, J.S. An, K.S. Hong, J. Eur. Ceram. Soc. 27, 3075–3079 (2007)

    Article  Google Scholar 

  25. J. Lin, Master thesis, Fuzhou university (2010)

  26. X.C. Fan, X.M. Chen, IEEE T. Microw. Theory 53, 3130–3134 (2005)

    Article  Google Scholar 

  27. L. Navias, R.L. Gree, J. Am. Ceram. Soc. 29, 267–276 (1946)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51602055) and Program for Fujian province development and reform commission (NDRC2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, W.J., Lin, J. et al. Sintering behaviors and microwave dielectric properties of Ti-modified Ba3Ti5Nb6O28 ceramics with 35BaO–35ZnO–30B2O3 addition. J Mater Sci: Mater Electron 29, 993–998 (2018). https://doi.org/10.1007/s10854-017-7997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7997-9

Navigation