Skip to main content
Log in

Novel temperature stable Ba1−xSrxV2O6 microwave dielectric ceramics with ultra-low sintering temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

New temperature stability Ba1−xSrxV2O6 (0.35 ≤ x ≤ 0.55) microwave dielectric ceramics prepared by the conventional solid-state route were investigated. X-ray diffraction confirmed that all the specimens formed a solid solution single phase with orthorhombic structure. The microwave dielectric properties strongly depended on the compositions, densification and microstructure of the specimens. Furthermore, partial Sr ions substitution for Ba ions in Ba1−xSrxV2O6 lattices not only successfully improved the temperature stability of BaV2O6-based ceramic but also promoted the sinterability of SrV2O6-based one. Out of these compositions, Ba0.5Sr0.5V2O6 sintered at 625 °C exhibited a near-zero τf together with a low permittivity εr ~ 11.5 and a quality factor Q × f ~ 14 100 GHz, which also showed good chemical compatibility with Al electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.X. Pang, D. Zhou, Z.M. Qi, W.G. Liu, Z.X. Yue, I.M. Reaney, J. Mater. Chem. C 5, 2695 (2017)

    Article  Google Scholar 

  2. H.P. Braun, A. Mehmood, H.R. Zhang, S.B. Heidary, C. Randall, M.T. Lanagan, I.M. Reaney, J. Eur. Ceram. Soc. 37, 2137 (2017)

    Article  Google Scholar 

  3. W. Jin, W.L. Yin, S.Q. Yu, M.J. Tang, Mater. Lett. 173, 47 (2016)

    Article  Google Scholar 

  4. X.H. Ma, S.H. Kweon, S. Nahm, C.Y. Kang, S.J. Yoon, J. Eur. Ceram. Soc. 37, 600 (2017)

    Google Scholar 

  5. J. Varghese, M.T. Sebastian, H.L. Jantunen, ACS Sustain. Chem. Eng. 4, 3897 (2016)

    Article  Google Scholar 

  6. R.R. Turnmala, J. Am. Ceram. Soc. 74, 895 (1991)

    Article  Google Scholar 

  7. H.T. Yu, J.S. Liu, W.L. Zhang, S.R. Zhang, J Mater Sci. 26, 9414 (2015)

    Google Scholar 

  8. M.T. Sebastian, H. Wang, H.L. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016)

    Article  Google Scholar 

  9. M. Udovic, M. Valant, D. Suvorov, J. Eur. Ceram. Soc. 21, 1735 (2001)

    Article  Google Scholar 

  10. G.K. Choi, J.R. Kim, S.H. Yoon, S.K. Hong, J. Eur. Ceram. Soc 27, 3063 (2007)

    Article  Google Scholar 

  11. E. K. Suresh, A. N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635 (2013)

    Article  Google Scholar 

  12. L. Fang, C.X. Su, H.F. Zhou, H. Zhang, J. Am. Ceram. Soc. 96, 688 (2013)

    Article  Google Scholar 

  13. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016)

    Article  Google Scholar 

  14. C.H. Su, Y.S. Wang, C.L. Huang, J. Alloys Comp. 641, 93 (2015)

    Article  Google Scholar 

  15. H. F. Zhou, F. He, X. L. Chen, L. Fang, J. Mater Sci. 25, 1480 (2014)

    Google Scholar 

  16. D. Zhou, L.X. Pang, Z.M. Qi, Q.P. Wang, C.A. Randall, Inorg. Chem. 53, 1048 (2015)

    Article  Google Scholar 

  17. G.G. Yao, P. Liu, J.J. Zhou, H.W. Zhang, J. Eur. Ceram. Soc. 34, 2983 (2014)

    Article  Google Scholar 

  18. S.E. Kalathil, A. Neelakantan, R. Ratheesh, J. Am. Ceram. Soc. 97, 1530 (2014)

    Article  Google Scholar 

  19. E. K. Suresh, K. Prasad, N. S. Arun, R. Ratheesh, J. Electron. Mater. 45, 2996 (2016)

    Article  Google Scholar 

  20. U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Eur. J. Inorg. Chem. 2, 305 (2015)

    Article  Google Scholar 

  21. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, A. Kan, J. Alloys Compd. 424, 388 (2006)

    Article  Google Scholar 

  22. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J. Am. Ceram. Soc. 92, 3092 (2009)

    Article  Google Scholar 

  23. Y. Zhang, Y.C. Zhang, M.Q. Xiang, J. Eur. Ceram. Soc. 36, 1945 (2016)

    Article  Google Scholar 

  24. Y. Wang, R.Z. Zuo, Ceram. Int. 42, 10801 (2016)

    Article  Google Scholar 

  25. B. Schnuriger, R. Enjalbert, J. M. Savariault, J. Galy, J. Solid. State Chem. 95, 397 (1991)

    Article  Google Scholar 

  26. S. Hasen, J. Nilsson, ActaChem. Scand 50, 512 (1996)

    Article  Google Scholar 

  27. J.Z. Gong, H.F. Zhou, F. He, X.L. Chen, L. Fang, Ceram. Int. 41, 11125 (2015)

    Article  Google Scholar 

  28. U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Eur. J. Inorg. Chem. 2015, 305 (2015)

    Article  Google Scholar 

  29. X. S. Jiang, H.L. Pan, Z.B. Feng, H.T. Wu, J. Mater. Sci-Mater. El. 27, 10963 (2016)

    Article  Google Scholar 

  30. H.T. Chen, Z. Xiong, Y. Yuan, B. Tang, S.R. Zhang, J. Mater. Sci-Mater. El. 27, 10951 (2016)

    Article  Google Scholar 

  31. H.J. Lee, K.S. Hong, S.J. Kim, Mater. Res. Bull. 32, 847 (1997)

    Article  Google Scholar 

  32. N. Khobragade, E. Sinha, S.K. Rout, M. Kar, Ceram. Int. 39, 9627 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51402235). China’s Postdoctoral Science Foundation (Grant No. 2015M582696), and by Shaanxi Province Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Guang Yao or Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, GG., Pei, CJ., Liu, P. et al. Novel temperature stable Ba1−xSrxV2O6 microwave dielectric ceramics with ultra-low sintering temperature. J Mater Sci: Mater Electron 28, 13283–13288 (2017). https://doi.org/10.1007/s10854-017-7163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7163-4

Keywords

Navigation