Skip to main content
Log in

The influence of extractives on the sorption characteristics of Scots pine (Pinus sylvestris L.)

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sorption behaviour of extracted and un-extracted Scots pine (Pinus sylvestris L.) heartwood was analysed using dynamic vapour sorption apparatus. In addition to the sorption isotherm and hysteresis, the moisture increments and decrements were determined as well as the rate of sorption. Parallel exponential kinetics model was used for further analysis. The effect of cyclic humidity loading on the sorption characteristics was studied by exposing samples to ten repeated sorption cycles and by determining the amount of accessible hydroxyl (OH) groups before and after the cyclic humidity loading. Removal of extractives led to an increase in EMC both in adsorption and in desorption. Hysteresis decreased due to the removal of extractives. Cyclic humidity loading reduced the sorptive capacity of wood material for both extracted and un-extracted wood, but was more pronounced in un-extracted wood. However, despite the decrease in the sorptive capacity, the amount of accessible OH groups increased after ten repeated dry-humid cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Osanyintola OF, Simonson CJ (2006) Moisture buffering capacity of hygroscopic building materials: experimental facilities and energy impact. Energy Build 38:1270–1282

    Article  Google Scholar 

  2. Rode C, Peuhkuri R, Mortensen LH, Hansen KK, Time B, Gustavsen A, Ojanen T, Ahonen J, Svennberg K, Harderup LE, Arfvidsson J (2005) Moisture buffering of building materials. Report. Technical University of Denmark, Lyngby

  3. Christensen GN, Hergt HFA (1969) Effect of previous history on kinetics of sorption by wood cell walls. J Polym Sci Part A 7:2427–2430

    Article  Google Scholar 

  4. Peralta PN (1995) Sorption of moisture by wood within a limited range of relative humidities. Wood Fiber Sci 27(1):13–21

    Google Scholar 

  5. Hoffmeyer P, Engelund ET, Thygesen LG (2011) Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions. Holzforschung 65(6):875–882

    Article  Google Scholar 

  6. Popescu CM, Hill CA (2013) The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym Degrad Stab 98(9):1804–1813

    Article  Google Scholar 

  7. Engelund ET, Thygesen LT, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47(1):141–161

    Article  Google Scholar 

  8. Adamopoulos S, Voulgaridis E (2012) Effect of hot-water extractives on water sorption and dimensional changes of black locust wood. Wood Res 57(1):69–78

    Google Scholar 

  9. Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47(7):3191–3197. doi:10.1007/s10853-011-6154-8

    Article  Google Scholar 

  10. Popescu CM, Hill CAS, Curling S, Ormondroyd G, Xie Y (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49(5):2362–2371. doi:10.1007/s10853-013-7937-x

    Article  Google Scholar 

  11. Shi J, Avramidis S (2017) Water sorption hysteresis in wood: i review and experimental patterns—geometric characteristics of scanning curves. Holzforschung. doi:10.1515/hf-2016-0120

    Google Scholar 

  12. Siau JF (1995) Wood: influence of moisture on physical properties, ISBN: 0-9622181-0-3 p 227

  13. Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173:180–190

    Article  Google Scholar 

  14. Hillis WE (1987) Heartwood and Tree Exudates. Springer, Berlin. ISBN 3-540-17593-8. 268p

    Book  Google Scholar 

  15. Garcia Esteban LG, Gril J, de Palacios P, Guindeo Casasús A (2005) Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62(3):275–284

    Article  Google Scholar 

  16. Suchy M, Virtanen J, Kontturi E, Vuorinen T (2009) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromol 11(2):515–520

    Article  Google Scholar 

  17. Hill CAS, Norton AJ, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112(3):1524–1537

    Article  Google Scholar 

  18. Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44(3):497–514

    Article  Google Scholar 

  19. Hill CAS, Norton AJ, Newman G (2010) Analysis of the water vapour sorption behaviour of Sitka spruce [Picea sitchensis (Bongard) Carr.] based on the parallel exponential kinetics model. Holzforschung 64(4):469–473

    Google Scholar 

  20. Hill CAS, Xie Y (2011) The dynamic water vapour sorption properties of natural fibres and viscoelastic behaviour of the cell wall: is there a link between sorption kinetics and hysteresis? J Mater Sci 46(11):3738–3748. doi:10.1007/s10853-011-5286-1

    Article  Google Scholar 

  21. Hill CAS, Ramsay J, Laine K, Rautkari L, Hughes M (2013) Water vapour sorption behaviour of thermally modified wood. Int Wood Prod J 4(3):191–196

    Article  Google Scholar 

  22. Hill CAS, Popescu CM, Rautkari L, Curling S, Ormondroyd G, Xie Y, Jalaludin Z (2014) The role of hydroxyl groups in determining the sorption properties of modified wood. In: European conference on wood modification 2014, March 10-12

  23. Zaihan J, Hill CAS, Curling S, Hashim WS, Hamdan H (2010) The kinetics of water vapour sorption: analysis using parallel exponential kinetics model on six Malaysian hardwoods. J Trop For Sci 22(2):107–117

    Google Scholar 

  24. Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23(2):185–196

    Google Scholar 

  25. Popper R, Niemz P, Eberle G, Torres M (2007) Influence of extractives on water vapour sorption by the example of wood species from Chile. In: Kurjatko, Kudela, Lagana (eds) Wood structure and properties ‘06. Arbora Publishers, Zvolen, Slovakia, pp 355–359

  26. Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36(4):483–492

    Google Scholar 

  27. Choong ET (1969) Effect of extractives on shrinkage and other hygroscopic properties of ten southern pine woods. Wood Fiber Sci 1(2):124–133

    Google Scholar 

  28. Holmbom B (1999) Extractives. In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and papermaking. Springer Verlag, Berlin, pp 125–148

    Chapter  Google Scholar 

  29. Fengel D, Wegener G (1989) Extractives. In: Wood: chemistry, ultrastructure, reactions. Reprint: Walter de Gruyter (1984). Ebrary, Berlin, pp 182–226

  30. Song K, Yin Y, Salmén L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49(4):1734–1742. doi:10.1007/s10853-013-7860-1

    Article  Google Scholar 

  31. Jebrane M, Pockrandt M, Terziev N (2014) Natural durability of selected larch and Scots pine heartwoods in laboratory and field tests. Int Biodeterior Biodegradation 91:88–96

    Article  Google Scholar 

  32. Holmbom B, Ekman R (1978) Tall oil precursors of scots pine and common spruce and their change during sulphate pulping. Acta Academiae Aboensis, Ser. B. 38(3) Åbo Akademi, 11 pp

  33. Hakkila P (1968) Geographical variation of some properties of pine and spruce pulpwood in Finland. Commun Inst For Fenn 66(8):60

    Google Scholar 

  34. Vainio-Kaila T, Rautkari L, Nordström K, Närhi M, Natri O, Kairi M (2013) Effect of extractives and thermal modification on antibacterial properties of Scots pine and Norway spruce. Int Wood Prod J 4(4):248–252

    Article  Google Scholar 

  35. Martínez-Iñigo MJ, Immerzeel P, Gutierrez A, del Río JC, Sierra-Alvarez R (1999) Biodegradability of extractives in sapwood and heartwood from Scots Pine by sapstain and white rot fungi. Holzforschung 53(3):247–252

    Article  Google Scholar 

  36. Uusitalo J (2004) Heartwood and extractive content of Scots pine in Southern Finland: models to apply at harvest. Wood Fiber Sci 36(1):3–8

    Google Scholar 

  37. Rautkari L, Hänninen T, Johansson L-S, Hughes M (2012) A study by X-ray photoelectron spectroscopy (XPS) of the chemistry of the surface of Scots pine (Pinus sylvestris L.) modified by friction. Holzforsching. 66(1):93–96

    Google Scholar 

  38. Spalt A (1958) The fundamentals of water vapor sorption by wood. For prod J 8(10):288–295

    Google Scholar 

  39. Popper R, Niemz P, Torres M (2006) Einfluss des Extraktstoffanteils ausgewählter fremdländischer Holzarten auf deren Gleichgewichtsfeuchte. Holz als Roh-und Werkstoff 64(6):491–496

    Article  Google Scholar 

  40. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1(4):253–277

    Article  Google Scholar 

  41. Skaar C (1988) Wood-water relations. Springer, Berlin. ISBN 3-540-19258-1. p 283

    Book  Google Scholar 

  42. Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6(1):23–40

    Article  Google Scholar 

  43. Pönni R, Rautkari L, Hill CAS, Vuorinen T (2014) Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor. Cellulose 21(3):1217–1226

    Article  Google Scholar 

  44. Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose–the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13(2):131–145

    Article  Google Scholar 

  45. Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48(18):6352–6356. doi:10.1007/s10853-013-7434-2

    Article  Google Scholar 

  46. Sharratt V, Hill CAS, Jalaludin Z, Kint DPR (2010) Photodegradation and weathering effects on timber surface moisture profiles as studied using dynamic vapour sorption. Polym Degrad Stab 95(CC):2659–2662

    Article  Google Scholar 

  47. Xie Y, Hill CAS, Jalaludin Z, Curling SF, Anandjiwala RD, Norton AJ, Newman G (2011) The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci 46(2):479–489. doi:10.1007/s10853-010-4935-0

    Article  Google Scholar 

  48. Zhou H, Xu R, Ma E (2016) Effects of removal of chemical components on moisture adsorption of wood. BioResources 11(2):3110–3122

    Google Scholar 

  49. Ball RD, Simpson IG, Pang S (2001) Measurement, modelling and prediction of equilibrium moisture content in Pinus radiata heartwood and sapwood. Holz als Roh-und Werkstoff 59(6):457–462

    Article  Google Scholar 

  50. Simon C, Garcia Esteban L, de Palacios P, Fernandez FG, Garcia-Iruela A (2017) Sorption/desorption hysteresis revisited. Sorption properties of Pinus pinea L. analysed by the parallel exponential kinetics and Kelvin-Voigt models. Holzforschung 71(2):171–177

    Article  Google Scholar 

  51. Siau JF (1984) Transport processes in wood. Springer, Berlin. ISBN 0-387-12574-4. p 245

    Book  Google Scholar 

  52. Čermák P, Vahtikari K, Rautkari L, Laine K, Horáček P, Baar J (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J Mater Sci 51(3):1504–1511. doi:10.1007/s10853-015-9471-5

    Article  Google Scholar 

  53. Glass SV, Boardman CR, Zelinka SL (2017) Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Sci Technol 51(3):243–260

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the contribution made by M.Sc. (Tech.), Architect Jonna Silvo in the preparation of Fig. 1. The work leading to this manuscript was primarily financed by AEF—the Aalto Energy Efficiency Research Programme—under the auspices of the Wood Life project. The financial support provided by AEF is gratefully acknowledged by Katja Vahtikari, Tuula Noponen and Mark Hughes. Financial support from the Swedish Research Council Formas (Project EnWoBio 2014-172) is greatly acknowledged by Kristiina Lillqvist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Vahtikari.

Ethics declarations

Conflict of interest

The funding sources have not been involved in study design; in the collection, analysis or interpretation of data; in the writing of the report; nor in the decision to submit the article for publication. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahtikari, K., Rautkari, L., Noponen, T. et al. The influence of extractives on the sorption characteristics of Scots pine (Pinus sylvestris L.). J Mater Sci 52, 10840–10852 (2017). https://doi.org/10.1007/s10853-017-1278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1278-0

Keywords

Navigation