Skip to main content
Log in

Effect of a halogen-based precursor on dopant incorporation in 3C-SiC film epitaxy

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon carbide thin films were synthesised by vapour phase epitaxy technique on silicon substrates using silane and propane as precursors. Methyltrichlorosilane (MTS) was added, and nitrogen was used as dopant precursor. Samples with different doping concentrations were obtained varying the nitrogen flow during the growth. Doping level for each sample was assessed using Raman technique, and a correlation between dopant flow and doping level was confirmed. The influence of MTS on nitrogen incorporation is analysed and discussed: the introduction of MTS increases the growth rate and increases the doping level. We exclude a direct doping effect by the MTS, but we think that it promotes the incorporation of nitrogen doping species. The crystalline quality of the as-grown films was evaluated using X-ray diffraction, assessing the good crystalline quality even in samples obtained using high growth rates and high doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Choyke WJ, Matsunami H, Pensl G (2004) Silicon carbide: recent major advances. Springer, Berlin, pp 89–118

    Book  Google Scholar 

  2. Parsons JD, Bunshah RF, Stafsudd OM (1985) Unlocking the potential of beta silicon carbide. Solid State Technol 28:133

    Google Scholar 

  3. Saddow SE, Agarwal A (2004) Advances in silicon carbide processing and applications. Artech House, Norwood, pp 69–108

    Google Scholar 

  4. Roccaforte F, Fiorenza P, Greco G, Lo Nigro R, Giannazzo F, Patti A, Saggio M (2014) Challenges for energy efficient wide band gap semiconductor power devices. Phys Status Solidi 211:2063–2071. doi:10.1002/pssa.201300558

    Article  Google Scholar 

  5. Kimoto T (2015) Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys 54:40103. doi:10.7567/JJAP.54.040103

    Article  Google Scholar 

  6. Fraga MA, Bosi M, Negri M (2015) Silicon carbide in microsystem technology—thin film versus bulk material. In: Saddow SE, La Via F (eds) Advanced silicon carbide devices and processing. InTech, Rijeka, pp 3–31. doi:10.5772/59734

    Google Scholar 

  7. Nagasawa H, Abe M, Yagi K, Kawahara T, Hatta N (2008) Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects. Phys Status Solidi 245:1272–1280. doi:10.1002/pssb.200844053

    Article  Google Scholar 

  8. Das P, Ferry DK (1976) Hot electron microwave conductivity of wide bandgap semiconductors. Solid State Electron 19:851–855. doi:10.1016/0038-1101(76)90042-3

    Article  Google Scholar 

  9. Shaffer PTB (1966) SiC whiskers. Ceram Age 82:46

    Google Scholar 

  10. Zhou D, Seraphin S (1994) Production of silicon carbide whiskers from carbon nanoclusters. Chem Phys Lett 222:233–238. doi:10.1016/0009-2614(94)00342-4

    Article  Google Scholar 

  11. Negri M, Dhanabalan SC, Attolini G, Lagonegro P, Campanini M, Bosi M, Fabbri F, Salviati G (2015) Tuning the radial structure of core–shell silicon carbide nanowires. CrystEngComm 17:1258–1263. doi:10.1039/C4CE01381F

    Article  Google Scholar 

  12. La Via F, Galvagno G, Foti G, Mauceri M, Leone S, Pistone G, Abbondanza G, Veneroni A, Masi M, Valente GL, Crippa D (2006) 4H SiC epitaxial growth with chlorine addition. Chem Vap Depos 12:509–515. doi:10.1002/cvde.200506465

    Article  Google Scholar 

  13. Bosi M, Attolini G, Negri M, Claudio F, Buffagni E, Frigeri C, Calicchio M, Pécz B, Riesz F, Cora I, Osváth Z, Jiang L, Borionetti G (2016) Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of buffer layer and methyltrichlorosilane addition. CrystEngComm 18:2770–2779. doi:10.1039/C6CE00280C

    Article  Google Scholar 

  14. Larkin DJ (1997) SiC dopant incorporation control using site-competition CVD. Phys Status Solidi 202:305–320. doi:10.1002/1521-3951(199707)202:1<305:AID-PSSB305>3.0.CO;2-9

    Article  Google Scholar 

  15. Matsunami H, Kimoto T (1997) Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Mater Sci Eng R Reports 20:125–166. doi:10.1016/S0927-796X(97)00005-3

    Article  Google Scholar 

  16. Camassel J, Juillaguet S, Zielinski M, Balloud C (2006) Application of LTPL investigation methods to CVD-grown SiC. Chem Vap Depos 12:549–556. doi:10.1002/cvde.200606472

    Article  Google Scholar 

  17. Yugami H, Nakashima S, Mitsuishi A, Uemoto A, Shigeta M, Furukawa K, Suzuki A, Nakajima S (1987) Characterization of the free-carrier concentrations in doped β-SiC crystals by Raman scattering. J Appl Phys 61:354. doi:10.1063/1.338830

    Article  Google Scholar 

  18. Piluso N, Severino A, Camarda M, Anzalone R, Canino A, Condorelli G, Abbondanza G, La Via F (2010) Raman Characterization of doped 3C-SiC/Si for different silicon substrates and C/Si ratios. Mater Sci Forum 645–648:255–258. doi:10.4028/www.scientific.net/MSF.645-648.255

    Article  Google Scholar 

  19. Piluso N, Severino A, Camarda M, Canino A, La Magna A, La Via F (2011) Raman study of bulk mobility in 3C-SiC heteroepitaxy. Mater Sci Forum 679–680:221–224. doi:10.4028/www.scientific.net/MSF.679-680.221

    Article  Google Scholar 

  20. Klein MV (1983) Light scattering in solids I. Springer, Berlin, pp 23–78. doi:10.1007/3-540-11913-2

    Google Scholar 

  21. Bosi M, Attolini G, Negri M, Frigeri C, Buffagni E, Ferrari C, Rimoldi T, Cristofolini L, Aversa L, Tatti R, Verucchi R (2013) Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates. J Cryst Growth 383:84–94. doi:10.1016/j.jcrysgro.2013.08.005

    Article  Google Scholar 

  22. Zielinski M, Portail M, Chassagne T, Juillaguet S, Peyre H (2008) Nitrogen doping of 3C-SiC thin films grown by CVD in a resistively heated horizontal hot-wall reactor. J Cryst Growth 310:3174–3182. doi:10.1016/j.jcrysgro.2008.03.022

    Article  Google Scholar 

  23. Pedersen H, Beyer FC, Hassan J, Henry A, Janzén E (2009) Donor incorporation in SiC epilayers grown at high growth rate with chloride-based CVD. J Cryst Growth 311:1321–1327. doi:10.1016/j.jcrysgro.2008.12.029

    Article  Google Scholar 

  24. Fiorucci A, Moscatelli D, Masi M (2007) Homoepitaxial silicon carbide deposition processes via chlorine routes. Surf Coat Technol 201:8825–8829. doi:10.1016/j.surfcoat.2007.04.110

    Article  Google Scholar 

  25. Kim G-H, Efremov AM, Kim D-P, Kim C-I (2005) Inductively coupled Cl2/N2 plasma: experimental investigation and modeling. Microelectron Eng 81:96–105. doi:10.1016/j.mee.2005.04.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Negri.

Ethics declarations

Conflict of interest

Author Matteo Bosi has received research grants from Anvil Semiconductors Ltd. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negri, M., Bosi, M., Orsi, D. et al. Effect of a halogen-based precursor on dopant incorporation in 3C-SiC film epitaxy. J Mater Sci 52, 9787–9793 (2017). https://doi.org/10.1007/s10853-017-1164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1164-9

Keywords

Navigation