Skip to main content
Log in

Low temperature fabrication of PEDOT:PSS/micro-textured silicon-based heterojunction solar cells

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic/inorganic heterojunctions provide a viable option to replace the conventional high-temperature dopant diffusion-based p–n junction owing to their low manufacturing cost. Thus, there has been increasing interests in low temperature heterojunction solar cell concepts particularly polymer/silicon-based heterojunction solar cells. Here, we report fabrication of heterojunction silicon solar cells employing a relatively rapid and solution-based low temperature (~100 °C) process wherein heterojunctions are made by directly spin coating the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a p-layer on the micro-textured (µT) n-Si substrates. The micro-texturing enhances the surface area as well as reduces reflectance to ~11 % in the spectral range useful for Si solar cell. The role of dimethyl sulfoxide (DMSO) addition in PEDOT:PSS on the performance parameters of the solar cells has been investigated. The PEDOT:PSS layer also acts as a surface passivation layer for n-Si as confirmed by the minority carrier lifetime measurements. Almost threefold enhancement in the photocurrent density (J sc) and a fivefold improvement in the conversion efficiency (η) for an optimized DMSO addition in the polymer have been observed compared to that having no DMSO addition. As a result, a maximum η of 6.45 % and J sc of 27.28 mA/cm2 have been achieved under 100 mW/cm2 irradiation at 25 °C. In these cells, open circuit voltage and fill factor are found low, which is the reason for low device efficiency. However, there is a scope for further improvement in device performance by process optimization particularly metal electrodes, PEDOT:PSS/DMSO layer thickness, PEDOT:PSS/DMSO/µT-Si interface properties, and incorporation of back surface field to exploit the full potential of such concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen TG, Huang BY, Chen EC, Yu P, Meng HF (2012) Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency. Appl Phys Lett 101(033301):1–5

    Google Scholar 

  2. Wolden CA, Kurtin J, Baxter JB, Repins I, Shaheen SE, Torvik JT, Rockett AA, Fthenakis VM, Aydil ES (2011) Photovoltaic manufacturing: Present status, future prospects, and research needs. J Vac Sci Technol A 29:030801

    Article  Google Scholar 

  3. Srivastava SK, Kumar D, Singh PK, Kumar V (2009) Silicon nanowire arrays based “black silicon” solar cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp 1851–1856

  4. Kumar D, Srivastava SK, Singh PK, Husain M, Kumar V (2011) Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol Energy Mater Sol Cells 95:215–218

    Article  Google Scholar 

  5. Srivastava SK, Kumar D, Vandana, Sharma M, Kumar R, Singh PK (2012) Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Sol Energy Mater Sol Cells 100:33–38

    Article  Google Scholar 

  6. Pei Z, Thiyagu S, Jhong MS, Hsieh WS, Cheng SJ, Ho MW, Chen YH, Liu JC, Yeh CM (2011) An amorphous silicon random nanocone/polymer hybrid solar cell. Sol Energy Mater Sol Cells 95:2431–2436

    Article  Google Scholar 

  7. Hiate T, Miyauchi N, Tang Z, Ishikawa R, Ueno K, Shirai H (2012) Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells. Phys Status Solidi C 9:2071–2074

    Article  Google Scholar 

  8. Schmidt J, Titova V, Zielke D (2013) Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability. Appl Phys Lett 103(183901):1–4

    Google Scholar 

  9. Liu Q, Khatri I, Ishikawa R, Ueno K, Shirai H (2012) Efficient crystalline Si/organic hybrid heterojunction solar cells. Phys Status Solidi C 9:2101–2106

    Article  Google Scholar 

  10. Pietsch M, Jäckle S, Christiansen S (2014) Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6%. Appl Phys A 115:1109–1113

    Article  Google Scholar 

  11. Pietsch M, Bashouti YM, Christiansen S (2013) The role of hole transport in hybrid inorganic/organic silicon/poly(3,4-ethylenedioxy-thiophene):poly (styrenesulfonate) heterojunction solar cells. J Phys Chem C 117:9049–9055

    Article  Google Scholar 

  12. Bashouti YM, Pietsch M, Brönstrup G, Sivakov V, Ristein J, Christiansen S (2014) Heterojunction based hybrid silicon nanowire solar cell: surface termination, photoelectron and photoemission spectroscopy study. Prog Photovolt Res Appl 22:1050–1061

    Article  Google Scholar 

  13. Singh PK, Kumar R, Lal M, Singh SN, Das BK (2001) Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol Energy Mater Sol Cells 70:103–113

    Article  Google Scholar 

  14. Srivastava SK, Kumar D, Singh PK, Kar M, Kumar V, Husain M (2010) Excellent antireflection properties of vertical silicon nanowire arrays. Sol Energy Mater Sol Cells 94:1506–1511

    Article  Google Scholar 

  15. Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Hybrid silicon nanocone–polymer solar cells. Nano Lett 12:2971–2976

    Article  Google Scholar 

  16. Kelzenberg M, Boettcher S, Petykiewicz J, Turner-Evans D, Putnam M, Warren E, Spurgeon J, Briggs R, Lewis N, Atwater H (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  Google Scholar 

  17. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    Article  Google Scholar 

  18. Tsakalakos L, Balch J, Fronheiser J, Shih M, LaBoeuf S, Pietrzykowski M, Codella P, Korevaar B, Sulima O, Rand J, Davuluru A, Ropol U (2007) Strong broadband absorption in silicon nanowire arrays with a large lattice constant for photovoltaic applications. J Nanophoton 1:013552

    Article  Google Scholar 

  19. Tian B, Zheng X, Kempa T, Fang Y, Huang J, Lieber C (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  Google Scholar 

  20. Garnett E, Yang P (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130:9224–9225

    Article  Google Scholar 

  21. Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH (2009) Silicon nanowire based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554

    Article  Google Scholar 

  22. Schmitt SW, Brönstrup G, Shalev G, Srivastava SK, Bashouti MY, Döhler G, Christiansen S (2014) Probing photo-carrier collection efficiencies of individual silicon nanowires diodes on a wafer substrate. Nanoscale 6:7897–7902

    Article  Google Scholar 

  23. Schmitt SW, Schechtel F, Amkreutz D, Bashouti M, Srivastava SK, Hoffmann B, Dieker C, Spiecker E, Rech B, Christiansen SH (2012) Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology. Nano Lett 12:4050–4054

    Article  Google Scholar 

  24. Thiyagu S, Devi BP, Pei Z (2011) Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res 4:1136–1143

    Article  Google Scholar 

  25. Chen TG, Huang BY, Huang YY, Chen EC, Yul P, Meng HF (2011) Fabrication and device modeling of micro-textured conductive polymer/silicon heterojunction solar cells. In: Proceedings of 38th IEEE Photovoltaic Specialists Conference, pp 3142–3145

  26. Huang JH, Kekuda D, Chu CW, Ho KC (2009) Electrochemical characterization of the solvent-enhanced conductivity of poly (3,4-ethylenedioxythiophene) and its application in polymer solar cells. J Mater Chem 19:3704–3712

    Article  Google Scholar 

  27. Gasiorowski J, Menon R, Hingerl K, Dachev M, Sariciftci NS (2013) Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives. Thin Solid Films 536:211–215

    Article  Google Scholar 

  28. Vazsonyi E, Clercq KD, Einhaus R, Kerschaver EV, Said K, Poortmans J, Szlufcik J, Nijs J (1999) Improved anisotropic etching process for industrial texturing of silicon solar cells. Sol Energy Mater Sol Cells 57:179–188

    Article  Google Scholar 

  29. Palik ED, Gray HF, Klein PB (1983) A Raman study of etching silicon in aqueous KOH. J Electrochem Soc 130:956–959

    Article  Google Scholar 

  30. Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions. J Electrochem Soc 137:3612–3626

    Article  Google Scholar 

  31. Cruz-Cruza I, Reyes-Reyesa M, Aguilar-Frutisb MA, Rodrigueza AG, López-Sandoval R (2010) Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synth Met 160:1501–1506

    Article  Google Scholar 

  32. Muller RS, Kamins TI (1986) Device electronics for integrated circuits, 2nd edn. Wiley, New York, p 229

    Google Scholar 

  33. Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt Res Appl 8:473–487

    Article  Google Scholar 

  34. Avasthi S, Qi Y, Vertelov GK, Schwartz J, Kahn A, Sturm JC (2010) Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone. Appl Phys Lett 96:222109

    Article  Google Scholar 

  35. Batra N, Vandana, Kumar S, Sharma M, Srivastava SK, Sharma P, Singh PK (2012) A comparative study of silicon surface passivation using ethanolic iodine and bromine solutions. Sol Energy Mater Sol Cells 100:43–47

    Article  Google Scholar 

  36. Sinton R, Cuevas A, Stuckings M (1996) In: Proceedings of the 25th IEEE Photovoltaic Specialists Conference, p 457

  37. Schroder D (1997) Carrier lifetimes in silicon. IEEE Trans Electron Devices 44:160–170

    Article  Google Scholar 

  38. Garnett EC, Peters C, Brongersma M Cui Y, McGehee M (2010) Silicon nanowire hybrid photovoltaics. In: Proceedings of the 35th IEEE Photovoltaic Specialist Conference, pp 934–938

  39. Na SI, Wang G, Kim SS, Kim TW, Oh SH, Yu BK, Lee T, Kim DY (2009) Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem 19:9045–9053

    Article  Google Scholar 

  40. Liu MY, Chang CH, Tsai KH, Wang DS, Lin SB, Chen PY, Lin YH, Lin WH, Lin CF (2009) Accurate measurement of performance of polymer solar cell with conductive PEDOT:PSS. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp 150–152

  41. Nardes AM, Kemrink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ (2008) Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron 9:727–734

    Article  Google Scholar 

  42. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Silicon nanowire solar cells. Appl Phys Lett 91(233117):1–3

    Google Scholar 

  43. Taguchi M, Terakawa A, Maruyama E, Tanaka M (2005) Obtaining a higher Voc in HIT cells. Prog Photovolt Res Appl 13:481–488

    Article  Google Scholar 

  44. Yameen M, Srivastava SK, Singh P, Prathap P, Vandana, Rauthan CMS, Singh PK (2014) Stability study of PEDOT:PSS/micro-textured silicon hetero-junction solar cells. Adv Sci Lett 20:1540–1544

    Article  Google Scholar 

Download references

Acknowledgements

Present work is sponsored by the Council of Scientific & Industrial Research-Young Scientist Awardee (CSIR-YSA) Research Project (Grant code: OLP 142732; P-81-113). Partial financial support from the CSIR, India under CSIR-TAPSUN Project (Grant code: NWP-55) is also acknowledged. Prashant Singh is thankful to CSIR for research fellowship during the work. Authors are thankful to Mr. K. N. Sood for SEM imaging of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yameen, M., Srivastava, S.K., Singh, P. et al. Low temperature fabrication of PEDOT:PSS/micro-textured silicon-based heterojunction solar cells. J Mater Sci 50, 8046–8056 (2015). https://doi.org/10.1007/s10853-015-9372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9372-7

Keywords

Navigation