Skip to main content
Log in

Review: achieving superplastic properties in ultrafine-grained materials at high temperatures

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanisms of superplasticity occurring in conventional materials, having grains sizes of the order of a few microns, are now understood reasonably well. However, very recent advances in the processing of ultrafine-grained (UFG) metals have provided an opportunity to extend the understanding of flow behavior to include UFG materials with submicrometer grain sizes. In practice, processing through the application of severe plastic deformation (SPD), as in equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), has permitted the fabrication of relatively large samples having UFG microstructures. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 μm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This review examines recent results that demonstrate the occurrence of exceptional superplastic flow in a series of UFG aluminum and magnesium alloys after ECAP and HPT. The results are analyzed to evaluate the superplastic flow mechanism and to compare with materials processed using different techniques. The critical issue of microstructural inhomogeneity is examined in two-phase UFG materials after SPD processing and the influence of microstructural homogeneity on the superplastic properties is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Langdon TG (1982) The mechanical properties of superplastic materials. Metall Mater Trans A 13A:689–701

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  3. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  4. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817

    Article  Google Scholar 

  5. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  6. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  7. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  8. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2015) Fundamentals of superior properties in bulk nanoSPD materials. Mater Res Lett

  9. Barnes AJ (2007) Superplastic forming 40 years and still growing. J Mater Eng Perform 16(4):440–454

    Article  Google Scholar 

  10. Chokshi AH, Mukherjee AK, Langdon TG (1993) Superplasticity in advanced materials. Mater Sci Eng R 10:237–274

    Article  Google Scholar 

  11. Jiang XG, Earthman J, Mohamed FA (1994) Cavitation and cavity-induced fracture during superplastic deformation. J Mater Sci 29:5499–5514. doi:10.1007/BF00349941

    Article  Google Scholar 

  12. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Kaibyshev OA, Utyashev FZ (2005) Superplasticity: microstructural refinement and superplastic roll forming. Futurepast, Arlington

    Google Scholar 

  14. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. doi:10.1007/s10853-009-3780-5

    Article  Google Scholar 

  15. Ma Y, Langdon TG (1994) Factors influencing the exceptional ductility of a superplastic Pb-62 pct Sn alloy. Metall Mater Trans A 25A:2309–2311

    Article  Google Scholar 

  16. Ahmed MMI, Langdon TG (1977) Exceptional ductility in the superplastic Pb-62 pct Sn eutectic. Metall Mater Trans A 8A:1832–1833

    Article  Google Scholar 

  17. Higashi K, Ohnishi T, Nakatani Y (1985) Superplastic behavior of commercial aluminum bronze. Scripta Metall 19:821–823

    Article  Google Scholar 

  18. Ishikawa H, Mohamed FA, Langdon TG (1975) The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid. Philos Mag 32:1269–1271

    Article  Google Scholar 

  19. Langdon TG (1994) An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A 174:225–230

    Article  Google Scholar 

  20. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443

    Article  Google Scholar 

  21. Mohamed FA, Langdon TG (1976) Deformation mechanism maps for superplastic materials. Scripta Metall 10:759–762

    Article  Google Scholar 

  22. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. doi:10.1007/s10853-006-6476-0

    Article  Google Scholar 

  23. Chang CP, Sun PL, Kao PW (2000) Deformation induced grain boundaries in commercially pure aluminium. Acta Mater 48:3377–3385

    Article  Google Scholar 

  24. Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall Mater Trans A 33A:2173–2184

    Article  Google Scholar 

  25. Zhilyaev AP, Swisher DL, Oh-ishi K, Langdon TG, McNelley TR (2006) Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP. Mater Sci Eng A 429:137–148

    Article  Google Scholar 

  26. Kawasaki M, Horita Z, Langdon TG (2009) Microstructural evolution in high purity aluminum processed by ECAP. Mater Sci Eng A 527:143–150

    Article  Google Scholar 

  27. Xu C, Horita Z, Langdon TG (2011) Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater Sci Eng A 528:6059–6065

    Article  Google Scholar 

  28. Larbi FH, Azzeddine H, Baudin T, Mathon MH, Brisset F, Helbert AL, Kawasaki M, Bradai D, Langdon TG (2015) Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing. J Alloys Compd 638:88–94

    Article  Google Scholar 

  29. Zhilyaev AP, Baró MD, Horita Z, Szpunar JA, Langdon TG (2004) Microstructure and grain-boundary spectrum of ultrafine-grained nickel produced by severe plastic deformation. Russ Metall (Metall) 1:60–74

    Google Scholar 

  30. Zhilyaev AP, McNelley TR, Langdon TG (2007) Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. J Mater Sci 42:1517–1528. doi:10.1007/s10853-006-0628-0

    Article  Google Scholar 

  31. Hafok M, Pippan R (2008) High-pressure torsion applied to nickel single crystals. Philos Mag 88:1857–1877

    Article  Google Scholar 

  32. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion. J Mater Sci 47:7782–7788. doi:10.1007/s10853-012-6587-8

    Article  Google Scholar 

  33. Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J Mater Sci 47:7815–7820. doi:10.1007/s10853-012-6400-8

    Article  Google Scholar 

  34. Khereddine AY, Larbi FH, Azzeddine H, Baudin T, Brisset F, Helbert AL, Mathon MH, Kawasaki M, Bradai D, Langdon TG (2013) Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion. J Alloys Compd 574:361–367

    Article  Google Scholar 

  35. Andreau O, Gubicza J, Zhang NX, Huang Y, Jenei P, Langdon TG (2014) Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion. Mater Sci Eng A 615:231–239

    Article  Google Scholar 

  36. Mungole T, Kumar P, Kawasaki M, Langdon TG (2015) The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J Mater Sci 50:3549–3561. doi:10.1007/s10853-015-8915-2

    Google Scholar 

  37. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater 3:511–516

    Article  Google Scholar 

  38. Xu C, Furukawa M, Horita Z, Langdon TG (2003) Achieving a superplastic forming capability through severe plastic deformation. Adv Eng Mater 5:359–364

    Article  Google Scholar 

  39. Chaudhury PK, Mohamed FA (1988) Effect of impurity content on superplastic flow in the Zn-22% Al alloy. Acta Metall 36:1099–1110

    Article  Google Scholar 

  40. Yan S, Earthman JC, Mohamed FA (1994) Effect of Cd on superplastic flow in the Pb-62 wt% Sn eutectic. Philos Mag A 69:1017–1038

    Article  Google Scholar 

  41. Mohamed FA, Langdon TG (1975) Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metall 23:117–124

    Article  Google Scholar 

  42. Kawasaki M, Xu C, Langdon TG (2005) An investigation of cavity growth in a superplastic aluminum alloy processed by ECAP. Acta Mater 53:5353–5364

    Article  Google Scholar 

  43. Figueiredo RB, Langdon TG (2012) Influence of rolling direction on flow and cavitation in a superplastic magnesium alloy processed by equal-channel angular pressing. Mater Sci Eng A 556:211–220

    Article  Google Scholar 

  44. Kawasaki M, Langdon TG (2012) An investigation of cavity development during superplastic flow in a zinc aluminum alloy processed using severe plastic deformation. Mater Trans 53:87–95

    Article  Google Scholar 

  45. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater 37:1945–1950

    Article  Google Scholar 

  46. Kawasaki M, Balasubramanian N, Langdon TG (2011) Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater Sci Eng A 528:6624–6629

    Article  Google Scholar 

  47. Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Mater Sci Eng A 297:111–118

    Article  Google Scholar 

  48. Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) An evaluation of the flow behavior during high strain rate superplasticity in an Al–Mg–Sc alloy. Metall Mater Trans A 32A:707–716

    Google Scholar 

  49. Park KT, Hwang DY, Lee YK, Kim YK, Shin DH (2003) High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation. Mater Sci Eng A 341:273–281

    Article  Google Scholar 

  50. Islamgaliev RK, Yunusova NF, Valiev RZ, Tsenev NK, Perevezentsev VN, Langdon TG (2003) Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing. Scripta Mater 49:467–472

    Article  Google Scholar 

  51. Shin DH, Hwang DY, Oh YJ, Park KT (2004) High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al-0.2 wt pct Sc. Metall Mater Trans A 35A:825–837

    Article  Google Scholar 

  52. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Superplastic behavior and microstructure evolution in a commercial Al–Mg–Sc alloy subjected to intense plastic straining. Metall Mater Trans A 35A:2383–2392

    Article  Google Scholar 

  53. Park KT, Lee HJ, Lee CS, Nam WJ, Shin DH (2004) Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing. Scripta Mater 51:479–483

    Article  Google Scholar 

  54. Lee S, Utsunomiya A, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2005) Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater 50:553–564

    Article  Google Scholar 

  55. Nikulin I, Kaibyshev R, Sakai T (2005) Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling. Mater Sci Eng A 407:62–70

    Article  Google Scholar 

  56. Kaibyshev R, Shipilova K, Musin F, Motohashi Y (2005) Achieving high strain rate superplasticity in an Al–Li–Mg alloy through equal channel angular extrusion. Mater Sci Technol 21:408–418

    Article  Google Scholar 

  57. Turba K, Málek P, Cieslar M (2007) Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing. Mater Sci Eng A 462:91–94

    Article  Google Scholar 

  58. Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, Mukherjee AK (2001) High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperatures. Philos Mag A 81:37–48

    Article  Google Scholar 

  59. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 393:344–351

    Article  Google Scholar 

  60. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 408:141–146

    Article  Google Scholar 

  61. Perevezentsev VN, Shcherban MYu, Murashkin MYu, Valiev RZ (2007) High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570. Tech Phys Lett 33:648–650

    Article  Google Scholar 

  62. Harai Y, Edalati K, Horita Z, Langdon TG (2009) Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater 57:1147–1153

    Article  Google Scholar 

  63. Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion. Mater Sci Eng A 500:170–175

    Article  Google Scholar 

  64. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J Mater Sci 47:7789–7795. doi:10.1007/s10853-012-6524-x

    Article  Google Scholar 

  65. Kawasaki M, Foissey J, Langdon TG (2013) Development of hardness homogeneity and superplastic behavior in an aluminum-copper eutectic alloy processed by high-pressure torsion. Mater Sci Eng A 561:118–125

    Article  Google Scholar 

  66. Alhamidi A, Horita Z (2015) Grain refinement and high strain rate superplasticity in aluminium 2024 alloy processed by high-pressure torsion. Mater Sci Eng A 622:139–145

    Article  Google Scholar 

  67. Avtokratova E, Sitdikov O, Markushev M, Mulyukov R (2012) Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy. Mater Sci Eng A 538:386–390

    Article  Google Scholar 

  68. Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater 59:627–630

    Article  Google Scholar 

  69. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A 525:68–77

    Article  Google Scholar 

  70. Wang J, Kang S-B, Kim H-W, Horita Z (2002) Lamellae deformation and structural evolution in an Al-33%Cu eutectic alloy during equal-channel angular pressing. J Mater Sci 37:5223–5227. doi:10.1023/A:1021048202055

    Article  Google Scholar 

  71. Kawasaki M, Ahn B, Langdon TG (2010) Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater 58:919–930

    Article  Google Scholar 

  72. Kawasaki M, Ahn B, Langdon TG (2010) Significance of strain reversals in a two-phase alloy processed by high-pressure torsion. Mater Sci Eng A 527:7008–7016

    Article  Google Scholar 

  73. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  74. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater 44:2753–2758

    Article  Google Scholar 

  75. Kawasaki M, Ahn B, Langdon TG (2010) Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion. J Mater Sci 45:4583–4593. doi:10.1007/s10853-010-4420-9

    Article  Google Scholar 

  76. Estrin Y, Molotnikov A, Davies DHJ, Lapovok R (2008) Strain gradient plasticity modelling of high-pressure torsion. J Mech Phys Solid 56:1186–1202

    Article  Google Scholar 

  77. Figueiredo RB, Langdon TG (2013) Three-dimensional analysis of plastic flow during high-pressure torsion. J Mater Sci 48:4524–4532. doi:10.1007/s10853-012-6979-9

    Article  Google Scholar 

  78. Cho T-S, Lee H-J, Ahn B, Kawasaki M, Langdon TG (2014) Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion. Acta Mater 72:67–79

    Article  Google Scholar 

  79. Choi I-C, Kim Y-J, Ahn B, Kawasaki M, Langdon TG, Jang J-I (2014) Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scripta Mater 75:102–105

    Article  Google Scholar 

  80. Zhang NX, Kawasaki M, Huang Y, Langdon TG (2013) Microstructural evolution in two-phase alloys processed by high-pressure torsion. J Mater Sci 48:4582–4591. doi:10.1007/s10853-012-7087-6

    Article  Google Scholar 

  81. Higashi K, Mabuchi M, Langdon TG (1996) High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ Int. 36:1423–1438

    Article  Google Scholar 

  82. Mohamed FA, Shei S-A, Langdon TG (1975) The activation energies associated with superplastic flow. Acta Metall 23:1443–1450

    Article  Google Scholar 

  83. Ma Y, Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Significance of microstructural control for superplastic deformation and forming. Mater Trans 37:336–339

    Article  Google Scholar 

  84. Xu C, Furukawa M, Horita Z, Langdon TG (2003) Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Mater 51:6139–6149

    Article  Google Scholar 

  85. Shariat P, Vastava RB, Langdon TG (1982) An evaluation of the roles of intercrystalline and interphase boundary sliding in two-phase superplastic alloys. Acta Metall 30:285–296

    Article  Google Scholar 

  86. Lin Z-R, Chokshi AH, Langdon TG (1998) An investigation of grain boundary sliding in superplasticity at high elongations. J Mater Sci 23:2712–2722. doi:10.1007/BF00547441

    Article  Google Scholar 

  87. Duong K, Mohamed FA (1998) Effect of impurity content on boundary sliding behavior in the superplastic Zn–22% Al alloy. Acta Mater 46:4571–4586

    Article  Google Scholar 

  88. Duong K, Mohamed FA (2001) Effect of impurity type on boundary sliding behavior in the superplastic Zn-22 pct Al alloy. Metall Mater Trans A 32A:103–113

    Article  Google Scholar 

  89. Kumar P, Xu C, Langdon TG (2005) The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP. Mater Sci Eng A410–411:447–450

    Article  Google Scholar 

  90. Kawasaki M, Langdon TG (2008) Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation. Mater Trans 49:84–89

    Article  Google Scholar 

  91. Kawasaki M, Langdon TG (2009) Flow behavior of a superplastic Zn–22% Al alloy processed by equal-channel angular pressing. Mater Sci Eng A 503:48–51

    Article  Google Scholar 

  92. Vastava RB, Langdon TG (1979) An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb-62% Sn eutectic. Acta Metall 27:251–257

    Article  Google Scholar 

  93. Kawasaki M, Langdon TG (2013) The significance of grain boundary sliding in the superplastic Zn–22% Al alloy processed by ECAP. J Mater Sci 48:4730–4741. doi:10.1007/s10853-012-7104-9

    Article  Google Scholar 

  94. Mabuchi M, Iwasaki H, Yanase K, Higashi K (1997) Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Mater 36:681–686

    Article  Google Scholar 

  95. Mabuchi M, Ameyama K, Iwasaki H, Higashi K (1999) Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater 47:2047–2057

    Article  Google Scholar 

  96. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Mater 46:851–856

    Article  Google Scholar 

  97. Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater 51:3073–3084

    Article  Google Scholar 

  98. Chuvil’deev VN, Nieh TG, Gryaznov MY, Kopylov VI, Sysoev AN (2004) Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing. J Alloys Compd 378:253–257

    Article  Google Scholar 

  99. Chuvil’deev VN, Nieh TG, Gryaznov MYu, Sysoev AN, Kopylov VI (2004) Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scripta Mater 50:861–865

    Article  Google Scholar 

  100. Miyahara Y, Matsubara K, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in a magnesium alloy processed by equal-channel angular pressing. Metall Mater Trans A 36A:1705–1711

    Article  Google Scholar 

  101. Furui M, Xu C, Aida T, Inoue M, Anada H, Langdon TG (2005) Improving the superplastic properties of a two-phase Mg–8% Li alloy through processing by ECAP. Mater Sci Eng A 410–411:439–442

    Article  Google Scholar 

  102. Miyahara Y, Horita Z, Langdon TG (2006) Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Mater Sci Eng A 420:240–244

    Article  Google Scholar 

  103. Figueiredo RB, Langdon TG (2006) The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP. Mater Sci Eng A 430:151–156

    Article  Google Scholar 

  104. Furui M, Kitamura H, Anada H, Langdon TG (2007) Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Mater 55:1083–1091

    Article  Google Scholar 

  105. Figueiredo RB, Langdon TG (2008) Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv Eng Mater 10:37–40

    Article  Google Scholar 

  106. Figueiredo RB, Langdon TG (2008) Developing superplasticity in a magnesium AZ31 alloy by ECAP. J Mater Sci 43:7366–7371. doi:10.1007/s10853-008-2846-0

    Article  Google Scholar 

  107. Yan K, Sun Y-S, Bai J, Xue F (2011) Microstructure and mechanical properties of ZA62 Mg alloy by equal-channel angular pressing. Mater Sci Eng A 528:1149–1153

    Article  Google Scholar 

  108. Xu SW, Zheng MY, Kamado S, Wu K (2012) The microstructural evolution and superplastic behavior at low temperatures of Mg–5.00Zn–0.92Y–0.16Zr (wt%) alloys after hot extrusion and ECAP process. Mater Sci Eng A 549:60–68

    Article  Google Scholar 

  109. Kang Z, Zhu L, Zhang J (2015) Achieving high strain rate superplasticity in Mg–Y–Nd–Zr alloy processed by homogenization treatment and equal channel angular pressing. Mater Sci Eng A 633:59–62

    Article  Google Scholar 

  110. Kulyasova OB, Islamgaliev RK, Kil’mametov AR, Valiev RZ (2006) Superplastic behavior of magnesium-based Mg-10 wt% Gd alloy after severe plastic deformation by torsion. Phys Met Metallogr 101:585–590

    Article  Google Scholar 

  111. Harai Y, Kai M, Kaneko K, Horita Z, Langdon TG (2008) Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion. Mater Trans 49:76–83

    Article  Google Scholar 

  112. Kai M, Horita Z, Langdon TG (2008) Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A 488:117–124

    Article  Google Scholar 

  113. Torbati-Sarraf SA, Langdon TG (2014) Properties of a ZK60 magnesium alloy processed by high-pressure torsion. J Alloys Compd 613:357–363

    Article  Google Scholar 

  114. Kawasaki M, Langdon TG (2013) The many facets of deformation mechanism mapping and the application to nanostructured materials. J Mater Res 28:1827–1834

    Article  Google Scholar 

  115. Kawasaki M, Langdon TG (2011) Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion. Mater Sci Eng A 528:6140–6145

    Article  Google Scholar 

  116. Kawasaki M, Lee S, Langdon TG (2009) Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing. Scripta Mater 61:963–966

    Article  Google Scholar 

  117. Kawasaki M, Mendes AA, Sordi VL, Ferrante M, Langdon TG (2011) Achieving superplastic properties in a Pb-Sn eutectic alloy processed by equal-channel angular pressing. J Mater Sci 46:155–160. doi:10.1007/s10853-010-4889-2

    Article  Google Scholar 

  118. Divinski SV, Ribbe J, Baither D, Schmitz G, Reglitz G, Rösner H, Sato K, Estrin Y, Wilde G (2009) Nano- and micro-scale free volume in ultrafine grained Cu–1 wt% Pb alloy deformed by equal channel angular pressing. Acta Mater 57:5706–5717

    Article  Google Scholar 

  119. Divinski SV, Reglitz G, Rösner H, Estrin Y, Wilde G (2011) Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater 59:1974–1985

    Article  Google Scholar 

  120. Oh-ishi K, Edalati K, Kim HS, Hono K, Horita Z (2013) High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater 61:3482–3489

    Article  Google Scholar 

  121. Ahn B, Zhilyaev AP, Lee H-J, Kawasaki M, Langdon TG (2015) Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater Sci Eng A 635:109–117

    Article  Google Scholar 

  122. Fujita T, Horita Z, Langdon TG (2002) Characteristics of diffusion in Al–Mg alloys with ultrafine grain sizes. Philos Mag A 82:2249–2262

    Article  Google Scholar 

  123. Higashi K (1994) Deformation mechanisms of positive exponent superplasticity in advanced aluminum alloys with nano or near-nano scale grained structures. Mater Sci Forum 170–172:131–140

    Article  Google Scholar 

  124. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi:10.1007/s10853-006-0954-2

    Article  Google Scholar 

  125. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRF Korea funded by Ministry of Education under Grant No. NRF-2014R1A1A2057697 (MK), and in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, M., Langdon, T.G. Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. J Mater Sci 51, 19–32 (2016). https://doi.org/10.1007/s10853-015-9176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9176-9

Keywords

Navigation