Skip to main content
Log in

In situ high temperature X-ray diffraction study of UO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystallites of UO2 with a size of 3–5 nm were studied in situ with high temperature X-ray diffraction (HT-XRD), thermogravimetry (TGA), and differential thermal analysis. The evolution of the crystallite size, the lattice parameter, and the strain were determined from ambient temperature up to 1200 °C. Below 700 °C, a weak effect on the crystallite size occurs and it remains below 10 nm, while a strong expansion of the lattice parameter is measured. The strain decreases with temperature and is completely released at 700 °C. Above this temperature, begins the sintering of the nanocrystallites reaching a size of about 80 nm at 1200 °C. The weight loss curve observed in TGA is assigned to the desorption of water molecules and is correlated with the strain evolution observed by HT-XRD. The linear thermal expansion and the thermal expansion coefficient at 800 °C are 1.3% and 16.9 × 10−6 °C−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Phys Rev Lett 77:99

    Article  CAS  Google Scholar 

  2. Muccillo ENS, Rocha RA, Tadokoro SK, Rey JFQ, Muccillo R, Steil MC (2004) J Electroceram 13:609

    Article  CAS  Google Scholar 

  3. Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Phys Rev B 51:6135

    Article  CAS  Google Scholar 

  4. Moon KS, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) J Electron Mater 34:168

    Article  CAS  Google Scholar 

  5. Boswell FWC (1951) Proc Phys Soc A 64:465

    Article  Google Scholar 

  6. Fukuhara M (2003) Phys Lett A 313:427

    Article  CAS  Google Scholar 

  7. Qi WH, Wang MP, Su YC (2002) J Mater Sci Lett 21:877

    Article  CAS  Google Scholar 

  8. Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Appl Phys Lett 87:133113

    Article  Google Scholar 

  9. Fievet F, Germi P, De Bergevin F, Figlarz M (1979) J Appl Cryst 12:387

    Article  CAS  Google Scholar 

  10. Li G, Boerico-Goates J, Woodfield BF (2004) Appl Phys Lett 85:2059

    Article  CAS  Google Scholar 

  11. Cimino A, Porta P, Valigi M (1965) J Am Ceram Soc 49:152

    Article  Google Scholar 

  12. Solliard C, Fludi M (1985) Surf Sci 156:487

    Article  CAS  Google Scholar 

  13. Vermaak JS, Kuhlmann-Wilsdorf D (1968) J Phys Chem 72:4150

    Article  CAS  Google Scholar 

  14. Wasserman HJ, Vermaak JS (1972) Surf Sci 32:168

    Article  CAS  Google Scholar 

  15. Sun CQ (1999) J Phys 11:4801

    CAS  Google Scholar 

  16. Wei Z, Xia T, Ma J, Feng W, Dai J, Wang Q, Yan P (2007) Mater Charact 58:1019

    Article  CAS  Google Scholar 

  17. Li G, Li L, Boerico-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8659

    Article  CAS  Google Scholar 

  18. Rousseau G, Fattahi M, Grambow B, Desgranges L, Boucher F, Ouvrard G, Millot N, Niepce JC (2009) J Solid State Chem 182:2591

    Article  CAS  Google Scholar 

  19. Kim HS, Park CH, Park CJ, Choi CB, Jung SH, Suk HC (1994) J Korean Nucl Soc 26:190

    CAS  Google Scholar 

  20. Amaya M, Nakamura J, Fuketa T (2008) J Nucl Sci Technol 45:244

    Article  CAS  Google Scholar 

  21. Santa Cruz H, Spino J, Grathwohl G (2008) J Eur Ceram Soc 28:1783

    Article  CAS  Google Scholar 

  22. Cullity BD (1978) In: Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading

    Google Scholar 

  23. Gronvold F (1955) J Inorg Nucl Chem 1:357

    Article  CAS  Google Scholar 

  24. Nickel H (1966) Nucleonik 8:366

    CAS  Google Scholar 

  25. Martin DG (1988) J Nucl Mater 152:94

    Article  Google Scholar 

  26. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  27. Sui ML, Lui K (1995) Nanostruct Mater 6:651

    Article  Google Scholar 

  28. Wagner M (1992) Phys Rev B 45:635

    Article  CAS  Google Scholar 

  29. Klam HJ, Hahn H, Gleiter H (1987) Acta Metall 35:2101

    Article  CAS  Google Scholar 

  30. Banerjee R, Sperling EA, Thompson GB, Fraser HL (2003) Appl Phys Lett 82:4250

    Article  CAS  Google Scholar 

  31. Zhao YH, Sheng HW, Lu K (2001) Acta Metall 49:365

    CAS  Google Scholar 

  32. Wang Y, Zhao H, Yihua Hu, Ye C, Zhang L (2007) J Cryst Growth 305:8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Hein for his technical support with TGA–DTA measurements. R. Jovani Abril acknowledges the European Commission for support in the frame of the program “Training and Mobility of Researchers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eloirdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abril, R.J., Eloirdi, R., Bouëxière, D. et al. In situ high temperature X-ray diffraction study of UO2 nanoparticles. J Mater Sci 46, 7247–7252 (2011). https://doi.org/10.1007/s10853-011-5684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5684-4

Keywords

Navigation