Skip to main content
Log in

Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites based on polyethylene glycol (PEG) embedded with nanoscopic Ag particles were prepared by two distinct approaches: in situ and ex situ chemical processing routes. The effect of Ag loading on tailored optical and electrical responses in the two classes of metal–polymer nanocomposites (MPNs) was investigated. Transmission electron microscopy of the in situ MPN sample revealed core–shell-type combination comprising Ag nanoparticles lying at the core surrounded by polymeric (PEG) shell. On the other hand, ex situ MPNs exhibited dispersed phase microstructure with uneven distribution of Ag nanoparticles in the PEG matrix. Comparison of the thermal properties of in situ and ex situ MPNs confirmed that the MPN obtained through in situ process with 2 wt% of Ag contents displayed higher thermal stability (≈18%) relative to ex situ MPN of the same composition. The absorption spectrum confirmed clear, blue shift with enhanced band gap in the case of in situ MPN relative to its ex situ counterpart. The Ag–PEG nanocomposites prepared by both the processes exhibited metallic I–V response. Electrical transport observed in terms of resistivity variation with temperature confirmed typical semiconducting behavior in the composite phase in sharp contrast to the insulating property of the host PEG. A large decrease (≈65%) in activation energy was observed in the case of in situ MPN at higher loading of Ag possibly because of the higher mobility assisted by tunneling of charge carriers through polymeric spacers in the composite phase. The drastic improvement in optical and electrical responses of the nanocomposites indicated the suitability for photovoltaic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chatterjee S (2008) J Mater Sci 43:1696. doi:https://doi.org/10.1007/s10853-007-2376-1

    Article  CAS  Google Scholar 

  2. Jager C, Bilke R, Heim M, Haarer D, Karickal H, Thelakkat M (2001) Synth Metals 121:1543

    Article  CAS  Google Scholar 

  3. Karim SMA, Nomura R, Sanda F, Seki S, Watanabe M, Masuda T (2003) Macromolecules 36:4786

    Article  Google Scholar 

  4. Pal K, Kang DJ, Zhang ZX, Kim JK (2010) Langmuir 26:3609

    Article  CAS  Google Scholar 

  5. Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Johan Wiley & Sons, New Jersey

    Google Scholar 

  6. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley VCH Verlag, GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  7. Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nano Lett 10:1253

    Article  CAS  Google Scholar 

  8. Yuan Y-Y, Liu X-Q, Wang Y-C, Wang J (2009) Langmuir 23:2126

    Google Scholar 

  9. Chen Q, Yue L, Xie F, Zhou M, Fu Y, Zhang Y, Weng J (2008) J Phys Chem 112:10004

    CAS  Google Scholar 

  10. Kickelbick G (2003) Prog Polym Sci 28:83

    Article  CAS  Google Scholar 

  11. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) J Nanopart Res 6:411

    Article  CAS  Google Scholar 

  12. Temgire MK, Joshi SS (2004) Rad Phys Chem 71:1039

    Article  CAS  Google Scholar 

  13. Mukherjee B, Mukherjee M (2009) Appl Phys Lett 94:73510-1

    Google Scholar 

  14. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117

    Article  CAS  Google Scholar 

  15. Lu J, Moon K-S, Xu J, Wong CP (2006) J Mater Chem 16:1543. doi:https://doi.org/10.1039/b514182f

    Article  CAS  Google Scholar 

  16. Ohnuma A, Cho EC, Jiang M, Ohtani B, Xia Y (2009) Langmuir 25:13880

    Article  CAS  Google Scholar 

  17. Rajesh, Ahuja T, Kumar D (2009) Sens Actuators B 136:275

    Article  CAS  Google Scholar 

  18. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) J Am Chem Soc 129:7661

    Article  CAS  Google Scholar 

  19. Khemtong C, Kessinger CW, Gao J (2009) Chem Commn 24:3497

    Article  Google Scholar 

  20. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos Part B 39:933

    Article  Google Scholar 

  21. Mayer ABR (1998) Mater Sci Eng C 6:155

    Article  Google Scholar 

  22. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Adv Eng Mater 112:1177

    Article  Google Scholar 

  23. Pakula C, Zaporojtchenko V, Strunskus T, Herges R, Faupel F (2010) Nanotechnology 21:465201

    Article  Google Scholar 

  24. Bernabo M, Pucci A, Ramanitra HH, Ruggeri G (2010) Materials 3:1461

    Article  CAS  Google Scholar 

  25. Gupta K, Jana PC, Meikap AK (2010) Synth Metals 160:1566

    Article  CAS  Google Scholar 

  26. Yu D-G, Lin W-C, Lin C-H, Chang L-M, Yang M-C (2007) Mater Chem Phys 101:93

    Article  CAS  Google Scholar 

  27. Mukherjee S, Mukherjee M (2006) J Phys Condens Matter 18:11233

    Article  CAS  Google Scholar 

  28. Datta H, Bhowmick AK, Singha NK (2009) Polymer 50:3259

    Article  CAS  Google Scholar 

  29. Mbhele ZH, Salemane MG, Sittert CGCEV, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Chem Mater 15:5019

    Article  CAS  Google Scholar 

  30. Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) Mater Chem Phys 106:412

    Article  CAS  Google Scholar 

  31. Gautam A, Ram S (2010) Mater Chem Phys 119:266

    Article  CAS  Google Scholar 

  32. Sadhu S, Bhowmick AK (2005) J Mater Sci 40:1633–1642 https://doi.org/10.1007/S10853-005-0663-2

    Article  CAS  Google Scholar 

  33. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2005) J Polym Sci Part B Polym Phys 43:2399

    Article  CAS  Google Scholar 

  34. Kar S, Bhowmick AK (2009) J Nanosci Nanotechnol 9:3144

    Article  CAS  Google Scholar 

  35. Ganguly A, Bhowmick AK (2008) Macromolecules 41:6246

    Article  CAS  Google Scholar 

  36. Maiti M, Bhowmick AK (2009) J Appl Polym Sci 111:1094

    Article  CAS  Google Scholar 

  37. Bhattacharya M, Bhowmick AK (2010) Rubber Chem Technol 83:16

    Article  CAS  Google Scholar 

  38. Lee PC, Meisel D (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  39. Streetman B, Banerjee S (2000) Solid state electronic devices. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

The financial support of IIT Patna is gratefully acknowledged to enable the authors undertake this study. VC is thankful to the Director, IIT Patna, for providing the laboratory and instrumentation facilities. Thanks are also due to the Director, AIIMS, New Delhi for providing the facilities of TEM. Special thanks are also due to the co-workers of Prof A K Bhowmick, who are working in the Rubber Technology Centre, IIT Kharagpur, for their valuable cooperation during experiments. AKB is thankful to DST, New Delhi and Commonwealth of Australia for providing Indo-Australia Strategic Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, V., Thakur, A.K. & Bhowmick, A.K. Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications. J Mater Sci 46, 6096–6105 (2011). https://doi.org/10.1007/s10853-011-5573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5573-x

Keywords

Navigation