Skip to main content
Log in

Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium aluminosilicate inorganic polymers were synthesised from dehydroxylated kaolin-type clay (halloysite) by the conventional method under highly alkaline conditions with lithium hydroxide or lithium silicate solutions of two different Li2O/SiO2 molar ratios. Variants were also developed of a solid-state synthesis method involving the thermal reaction of dehydroxylated halloysite with LiOH followed by hydration of the product. The molar compositions of the materials prepared by all three methods (SiO2/Al2O3 = 2.41–3.27, Li2O/SiO2 = 0.30–0.61, and H2O/Li2O = 9.33–10.40) fall within the range of compositions previously reported to produce viable geopolymers. Curing at 40 °C produces solid samples of varying viability depending on the amount of synthesis water. The cured materials are not characteristically X-ray amorphous, but contain the lithium zeolites Li-ABW and fibrous Li-EDI, the latter in the materials synthesised by solid-state reaction. The 27Al and 29Si MAS NMR spectra of the cured materials contain narrow resonances more characteristic of zeolites than of inorganic polymers. Heating the synthesised products at <800 °C produces β-eucryptite, LiAlSiO4. In a further series of thermal reactions, β-spodumene, LiAlSi2O6 is formed at 900 °C, decomposing at 1100 °C to form additional β-eucryptite. At 1275 °C, β-spodumene reappears in the samples of higher silica content. Judicious manipulation of the composition and thermal treatment of the Li-zeolites formed in these lithium aluminosilicate syntheses could make them useful precursors to β-eucryptite and β-spodumene ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  2. Barbosa VFF, MacKenzie KJD, Thurmaturgo C (2000) Int J Inorg Mater 2:309

    Article  CAS  Google Scholar 

  3. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  4. Wijnen PWJG (1989) J Non-Cryst Sol 109:85

    Article  CAS  ADS  Google Scholar 

  5. Kinrade SD, Pole DL (1992) Inorg Chem 31:4558

    Article  CAS  Google Scholar 

  6. Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) J Eur Ceram Soc 25:1471

    Article  CAS  Google Scholar 

  7. Barrer RM, Mainwaring DE (1972) J Chem Soc Dalton Trans 2534

  8. Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57:1477

    Article  CAS  Google Scholar 

  9. Cundy CS, Cox PA (2005) Microporous Mesoporous Mater 82:1

    Article  CAS  Google Scholar 

  10. Kolousek D, Brus J, Urbanova M, Andertova J, Hulinsky V, Vorel J (2007) J Mater Sci 42:9267. doi:10.1007/s10853-007-1910-5

    Article  CAS  ADS  Google Scholar 

  11. MacKenzie KJD (2009) Ceram Eng Sci Proc 30:251

    CAS  Google Scholar 

  12. Beall GH (1992) Ann Rev Mater Sci 22:91

    Article  CAS  ADS  Google Scholar 

  13. Roy R, Agrawal DK, McKinstry HA (1989) Ann Rev Mater Sci 19:59

    Article  CAS  ADS  Google Scholar 

  14. Bedard RL, Flanigen EM (1993) United States Patent 5179051

  15. Subramanian MA, Corbin DR, Chowdhry U (1993) Bull Mater Sci 16:665

    Article  CAS  Google Scholar 

  16. Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  17. Matsumoto T, Miyazaki T, Goto Y (2006) J Eur Ceram Soc 26:455

    Article  CAS  Google Scholar 

  18. Sathupunya M, Gulari E, Wongkasemjit S (2004) Mater Chem Phys 83:89

    Article  CAS  Google Scholar 

  19. Yao ZT, Xia MS, Ye Y, Zhang L (2009) J Hazardous Mater 170:639

    Article  CAS  Google Scholar 

  20. Haden WL, Dzierzanowski F (1964) United States Patent 3123441

  21. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) Colloids Surf A 318:97

    Article  CAS  Google Scholar 

  22. Klinowski J, Thomas JM, Fyfe CA, Hartman JS (1981) J Phys Chem 85:2590

    Article  CAS  Google Scholar 

  23. Rios CA, Williams RCD, Roberts CL (2009) Fuel 88:1403

    Article  CAS  Google Scholar 

  24. Klinowski J (1984) Prog Nucl Magn Reson Spectrosc 16:237

    Article  CAS  Google Scholar 

  25. Magi M, Lippmaa E, Samosan A (1984) J Phys Chem 88:1518

    Article  CAS  Google Scholar 

  26. Gabriel A, Slavin M, Carl HF (1942) Econom Geol 37:116

    Article  CAS  Google Scholar 

  27. Yamuna A, Devanarayanan S, Lalithambika M (2001) J Am Ceram Soc 84:1703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to M. J. Ryan for assistance with the interpretation of the XRD data and to D. Flynn for assistance with the electron microscopy. This study was partly funded by a subcontract from Industrial Research Ltd. of the Foundation for Research Science and Technology contract CO8X0302 and partly by the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. D. MacKenzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connor, S.J., MacKenzie, K.J.D. Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers. J Mater Sci 45, 3707–3713 (2010). https://doi.org/10.1007/s10853-010-4383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4383-x

Keywords

Navigation