Skip to main content
Log in

Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and growth behavior for vertically aligned Zinc oxide (ZnO) nanowires, synthesized on a ZnO thin film template by pulsed-laser deposition (PLD), is reported. The nanowire growth proceeds without any metal catalyst for nucleation, although an epitaxial ZnO thin film template is necessary in order to achieve uniform alignment. Nanowire growth at argon or oxygen background pressures of 500-mTorr results in nanowire diameters as small as 50–90 nm, with diameters largely determined by growth pressure and temperature. Room temperature photoluminescence show both near-band-edge and deep-level emission. The deep-level emission is believed caused by oxygen vancancies formed during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2003) Superlattices Microstruct 34:3. doi:https://doi.org/10.1016/S0749-6036(03)00093-4

    Article  CAS  Google Scholar 

  2. Carcia PF, McLean RS, Reilly MH, Nunes G Jr (2003) Appl Phys Lett 82:1117. doi:https://doi.org/10.1063/1.1553997

    Article  CAS  Google Scholar 

  3. Masuda S, Kitamura K, Okumura Y, Miyatake S, Tabata H, Kawai T (2003) J Appl Phys 93:1624. doi:https://doi.org/10.1063/1.1534627

    Article  CAS  Google Scholar 

  4. Heo YW, Kwon YW, Li Y, Pearton SJ, Norton DP (2005) J Electron Mater 34:409. doi:https://doi.org/10.1007/s11664-005-0120-7

    Article  CAS  Google Scholar 

  5. Fan Z, Wang D, Chang P-C, Tseng W-Y, Lu JG (2004) Appl Phys Lett 85:5923. doi:https://doi.org/10.1063/1.1836870

    Article  CAS  Google Scholar 

  6. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP et al (2004) Appl Phys Lett 84:3654. doi:https://doi.org/10.1063/1.1738932

    Article  CAS  Google Scholar 

  7. Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85:6389. doi:https://doi.org/10.1063/1.1840116

    Article  CAS  Google Scholar 

  8. Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP et al (2005) Appl Phys Lett 86:243503. doi:https://doi.org/10.1063/1.1949707

    Article  Google Scholar 

  9. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT et al (2005) Appl Phys Lett 87:222106. doi:https://doi.org/10.1063/1.2136070

    Article  Google Scholar 

  10. Kang BS, Heo YW, Tien LC, Norton DP, Ren F, Gila BP et al (2005) Appl Phys A 80:1029. doi:https://doi.org/10.1007/s00339-004-3098-8

    Article  CAS  Google Scholar 

  11. Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP et al (2005) Appl Phys A 81:1117. doi:https://doi.org/10.1007/s00339-005-3310-5

    Article  CAS  Google Scholar 

  12. Liu LQ, Xiang B, Zhang XZ, Zhang Y, Yu DP (2006) Appl Phys Lett 88:063104. doi:https://doi.org/10.1063/1.2168510

    Article  Google Scholar 

  13. Ronning C, Gao PX, Ding Y, Wang ZL, Schwen D (2004) Appl Phys Lett 84:783. doi:https://doi.org/10.1063/1.1645319

    Article  CAS  Google Scholar 

  14. Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S et al (2001) Appl Phys Lett 78:958. doi:https://doi.org/10.1063/1.1348323

    Article  CAS  Google Scholar 

  15. Cui J, Zeng Q, Gibson UJ (2006) J Appl Phys 99:8

    Google Scholar 

  16. Pearton SJ, Norton DP, Heo YW, Tien LC, Ivill MP, Li Y et al (2006) J Electron Mater 35:862. doi:https://doi.org/10.1007/BF02692541

    Article  CAS  Google Scholar 

  17. Heo YW, Tien LC, Norton DP, Pearton SJ, Kang BS, Ren F et al (2004) Appl Phys Lett 85:2107. doi:https://doi.org/10.1063/1.1791733

    Article  Google Scholar 

  18. Polyakov AY, Smirnov NB, Kozhukhova EA, Vdovin VI, Ip K, Heo YW et al (2003) Appl Phys Lett 83:575. doi:https://doi.org/10.1063/1.1594830

    Article  Google Scholar 

  19. Heo YW, Tien LC, Kwon Y, Norton DP, Pearton SJ, Kang BS et al (2004) Appl Phys Lett 85:2274. doi:https://doi.org/10.1063/1.1794351

    Article  CAS  Google Scholar 

  20. Lim J-H, Kong C-K, Kim K-K, Park I-K, Hwang D-K, Park S-J (2006) Adv Math 18:2720. doi:https://doi.org/10.1002/adma.200502633

    Article  CAS  Google Scholar 

  21. Wei ZP, Lu YM, Shen DZ, Zhang ZZ, Yao B, Li BH et al (2007) Appl Phys Lett 90:042113. doi:https://doi.org/10.1063/1.2435699

    Article  Google Scholar 

  22. Jiao SJ, Zhang ZZ, Lu YM, Shen DZ, Yao B, Zhang JY et al (2006) Appl Phys Lett 88:031911. doi:https://doi.org/10.1063/1.2166686

    Article  Google Scholar 

  23. Jeong M-C, Oh B-Y, Ham M-H, Myoung J-M (2006) Appl Phys Lett 88:202105. doi:https://doi.org/10.1063/1.2204655

    Article  Google Scholar 

  24. Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F et al (2004) Mater Sci Eng Rep 47:1. doi:https://doi.org/10.1016/j.mser.2004.09.001

    Article  Google Scholar 

  25. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Math 13:113. doi:10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

    Article  CAS  Google Scholar 

  26. Heo YW, Varadarajan V, Kaufman M, Kim K, Norton DP, Fleming PH (2002) Appl Phys Lett 81:3046. doi:https://doi.org/10.1063/1.1512829

    Article  CAS  Google Scholar 

  27. Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G et al (2005) Nano Lett 5:1231. doi:https://doi.org/10.1021/nl050788p

    Article  CAS  Google Scholar 

  28. Guo M, Diao P, Cai S (2005) J Solid State Chem 178:1864. doi:https://doi.org/10.1016/j.jssc.2005.03.031

    Article  CAS  Google Scholar 

  29. Ma T, Guo M, Zhang M, Zhang Y, Wang X (2007) Nanotechnology 18:035605. doi:https://doi.org/10.1088/0957-4484/18/3/035605

    Article  Google Scholar 

  30. Okada T, Agung BH, Nakata Y (2004) Appl Phys A 79:1417

    Article  CAS  Google Scholar 

  31. Hartanto AB, Ning X, Nakata Y, Okada T (2004) Appl Phys A 78:299. doi:https://doi.org/10.1007/s00339-003-2286-2

    Article  CAS  Google Scholar 

  32. Kawakami M, Hartanto AB, Nakata Y, Okada T (2003) Jpn J Appl Phys Part 2 Lett 42:L33

    Article  CAS  Google Scholar 

  33. Konenkamp R, Word RC, Schlegel C (2004) Appl Phys Lett 85:6004. doi:https://doi.org/10.1063/1.1836873

    Article  CAS  Google Scholar 

  34. Fan Z, Dutta D, Chien C-J, Chen H-Y, Brown EC, Chang P-C et al (2006) Appl Phys Lett 89:213110. doi:https://doi.org/10.1063/1.2387868

    Article  Google Scholar 

  35. Wang ZL, Song J (2006) Science 312:243

    Google Scholar 

  36. Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J (2005) Appl Phys Lett 86:024108. doi:https://doi.org/10.1063/1.1851607

    Article  Google Scholar 

  37. Wu J-J, Liu S-C (2002) Adv Math 14:215. doi:10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J

    Article  CAS  Google Scholar 

  38. Zhang G, Nakamura A, Aoki T, Temmyo J, Matsui Y (2006) Appl Phys Lett 89:113112. doi:https://doi.org/10.1063/1.2207832

    Article  Google Scholar 

  39. Yi G-C, Park WI, Kim DH, Jung SW (2002) Appl Phys Lett 80:4232. doi:https://doi.org/10.1063/1.1434313

    Article  Google Scholar 

  40. Park JY, Yun YS, Hong YS, Oh H, Kim J-J, Kim SS (2005) Appl Phys Lett 87:23108

    Google Scholar 

  41. Lowndes DH, Geohegan DB, Puretzky AA, Norton DP, Rouleau CM (1996) Science 273:898. doi:https://doi.org/10.1126/science.273.5277.898

    Article  CAS  Google Scholar 

  42. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983. doi:https://doi.org/10.1063/1.362349

    Article  CAS  Google Scholar 

  43. Heo YW, Norton DP, Pearton SJ (2005) J Appl Phys 98:073502. doi:https://doi.org/10.1063/1.2064308

    Article  Google Scholar 

  44. Liu ZW, Ong CK, Yu T, Shen ZX (2006) Appl Phys Lett 88:053110. doi:https://doi.org/10.1063/1.2168675

    Article  Google Scholar 

  45. Heo YW, Tien LC, Norton DP, Kang BS, Ren F, Gila BP et al (2004) Appl Phys Lett 85:2002. doi:https://doi.org/10.1063/1.1792373

    Article  CAS  Google Scholar 

  46. Costa PMFJ, Golberg D, Shen G, Mitome M, Bando Y (2008) J Mater Sci 43:1460. doi:https://doi.org/10.1007/s10853-007-2307-1

    Article  CAS  Google Scholar 

  47. Chander R, Raychaudhuri AK (2006) J Mater Sci 41:3623. doi:https://doi.org/10.1007/s10853-006-6218-3

    Article  CAS  Google Scholar 

  48. Liu ZW, Yeo SW, Ong CK (2007) J Mater Sci 42:6489. doi:https://doi.org/10.1007/s10853-007-1557-2

    Article  CAS  Google Scholar 

  49. Heo YW, Kaufman M, Pruessner K, Siebein KN, Norton DP, Ren F (2005) Appl Phys A 80:263. doi:https://doi.org/10.1007/s00339-004-2667-1

    Article  CAS  Google Scholar 

  50. Heo YW, Abernathy C, Pruessner K, Sigmund W, Norton DP, Overberg M et al (2004) J Appl Phys 96:3424. doi:https://doi.org/10.1063/1.1774257

    Article  CAS  Google Scholar 

  51. Yang Z, Huang Y, Chen ST, Zhao YQ, Li HL, Hu ZA (2005) J Mater Sci 40:1121. doi:https://doi.org/10.1007/s10853-005-6927-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Kennedy Space Center Grant NAG 10–316. The authors would also like to acknowledge the assistance of the staff member in the Major Analytical Instrumentation Center (MAIC) at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Norton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, L.C., Pearton, S.J., Norton, D.P. et al. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. J Mater Sci 43, 6925–6932 (2008). https://doi.org/10.1007/s10853-008-2988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2988-0

Keywords

Navigation