Skip to main content
Log in

Structure of yttria stabilized zirconia beads produced by gel supported precipitation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Yttria stabilized zirconia (YSZ) is one of the inert matrix candidates selected for investigation as host matrix for minor actinide (MA) transmutation. The structural properties of (Zr0.84, Y0.16)O1.92 beads prepared by a sol–gel method for MA infiltration, are characterized as calcined (850 °C) and sintered (1,600 °C) beads. The calcined YSZ beads are fine-grained and homogenous over the entire sphere and are surrounded by a uniform outer layer of approximately 30 μm thickness. After sintering at 1,600 °C, the beads are compacted to 51% of their initial volume and exhibit a granular structure. The thermal expansion is nearly linear for the calcined material, but shows a parabolic behavior for the sintered (1,400 °C) beads. In addition, the thermal expansion of calcined material is 20–25% less than after sintering. During heating up to 1,400 °C, two processes can be distinguished. The first occurs between 900 and 1,000 °C and is related to an increase in unit cell order. The second process involves grain-growth of the less crystalline calcined material between 1,100 and 1,300 °C. These results have implications for preparation of YSZ and its use as an inert MA transmutation matix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Degueldre C, Paratte JM (1999) J Nucl Mater 274:1

    Article  CAS  Google Scholar 

  2. Raison PE, Haire RG (2001) Progress Nucl Energy 38:251

    Article  CAS  Google Scholar 

  3. Fernández A, Haas D, Konings RJ, Somers J (2002) J Am Ceram Soc 85:694

    Article  Google Scholar 

  4. Scott HG (1975) J Mater Sci 10:1527

    Article  CAS  Google Scholar 

  5. Yashima M, Kakihana M, Yoshimura M (1996) Solid State Ionics 86–88:1131

    Article  Google Scholar 

  6. Zhou Y, Lei T-C, Sakuma T (1991) J Am Ceram Soc 74:633

    Article  CAS  Google Scholar 

  7. Yashima M, Ohtake K, Arashi H, Kakihana M, Yoshimura M (1993) J Appl Phys 74:7603

    Article  CAS  Google Scholar 

  8. Yashima M, Sasaki S, Kakihana M (1994) Acta Cryst B 50:663

    Article  Google Scholar 

  9. Li P, Chen I-W, Penner-Hahn JE (1994) J Am Ceram Soc 77:118

    Article  CAS  Google Scholar 

  10. Antonioli G, Lottici PP, Manzini I, Gnappi G, Montenero A, Paloschi F, Parent P (1994) J Non-Cryst Solids 177:179

    Article  CAS  Google Scholar 

  11. Wang Y, Lu K, Wang D, Wu Z, Fang Z (1994) J Phys Condens Matter 6:633

    Article  CAS  Google Scholar 

  12. Chadwick AV, Mountjoy G, Nield VM, Poplett IJF, Smith ME, Strange JH, Tucker MG (2001) Chem Mater 13:1219

    Article  CAS  Google Scholar 

  13. Jiménez-Solís C, Esquivias L, Prieto C (1995) J Alloy Compd 228:188

    Article  Google Scholar 

  14. Qi Z, Shi C, Wei Y, Wang Z, Liu T, Hu T, Zhao Z, Li F (2001) J Phys Condens Matter 13:11503

    Article  CAS  Google Scholar 

  15. Rush GE, Chadwick AV, Kosacki I, Anderson HU (2000) J Phys Chem B 104:9597

    Article  CAS  Google Scholar 

  16. Kak AC, Slaney M (eds) Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, Philadelphia, 2001)

  17. Rodriguez-Carvajal J FULLPROF version 3.00 (ILL, November 2004, unpublished)

  18. Klug HP, Alexander LE (1974) X-ray procedures. Wiley, New York

    Google Scholar 

  19. Denecke MA, Rothe J, Dardenne K, Blank H, Hormes J (2005) Physika Scripta T115:1001

    Article  CAS  Google Scholar 

  20. Ressler T, (1998) J Synchrotron Rad 5:118

    Article  CAS  Google Scholar 

  21. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD, (1998) Phys Rev B 58:7565

    Article  CAS  Google Scholar 

  22. Terblanche SP, (1989) J Appl Cryst 22:283

    Article  CAS  Google Scholar 

  23. Li P, Chen I-W, Penner-Hahn JE, (1993) Phys Rev B 48:10074

    Article  CAS  Google Scholar 

  24. Catlow CRA, Chadwick AV, Greaves GN, Moroney LM, (1986) J Am Ceram Soc 69:272

    Article  CAS  Google Scholar 

  25. Tuilier MH, Dexpert-Ghys J, Dexpert H, Lagarde P, (1987) J Solid State Chem 69:153

    Article  CAS  Google Scholar 

  26. Ishizawa N, Matsushima Y, Hayashi M, Ueki M, (1999) Acta Cryst B 55:726

    Article  CAS  Google Scholar 

  27. Veal BW, McKale AG, Paulikas AP, Rothman SJ, Nowicki LJ, (1988) Physica B 150:234

    Article  CAS  Google Scholar 

  28. Clark JN, Glasson DR, Jayaweera SAA, (1987) Rev Chim Miner 24:654

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of Y. Martin Alvarez and H. Hein in the preparation of samples, J. Rothe and K. Dardenne for assistance using the INE-beamline, and thank the ANKA Angstroemquelle Karlsruhe for providing beamtime for the EXAFS measurements. X-ray tomography at ORNL was sponsored by the Office of Nuclear Energy, Science and Technology and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract No. DE-ACO5-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Walter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, M., Somers, J., Fernandez, A. et al. Structure of yttria stabilized zirconia beads produced by gel supported precipitation. J Mater Sci 42, 4650–4658 (2007). https://doi.org/10.1007/s10853-006-0515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0515-8

Keywords

Navigation