Skip to main content
Log in

Determination of the ionization constants of natural cyclodextrins by high-resolution 1H-NMR and photon correlation spectroscopy

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 13 October 2010

Abstract

The purpose of this investigation has been to establish reference pK a values in D2O for the three natural CDs by high-resolution 1H-NMR, according to the recent guidelines provided by the IUPAC for the determination of extreme pK a values. The most alkaline conditions achieved in this study than in previous pH potentiometric assays have made possible to deduce the pK a for the three acidic groups of each CD. In addition, we have studied the effects of the ionization of β-CD on the aggregation properties of this macrocycle in H2O by dynamic light scattering (DLS) as a function of pH. This procedure provides an indirect way of measuring the pK a of β-CD either by tracking the percentage of scattered light or the hydrodynamic radii of the species involved and reveals that the aggregates of β-CD break and reduce their size progressively upon ionization of the OH groups in positions 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Etten, R.L., Clowes, G.A., Sebastian, J.F., Bender, M.L.: The mechanism of the cycloamylose-accelerated cleavage of phenyl esters. J. Am. Chem. Soc. 89, 3253–3262 (1967)

    Article  Google Scholar 

  2. Izatt, R.M., Rytting, J.H., Hansen, L.D., Christensen, J.J.: Thermodynamics of proton dissociation in dilute aqueous solution. V. An entropy titration study of adenosine, pentoses, hexoses, and related compounds. J. Am. Chem. Soc. 88, 2641–2645 (1966)

    Article  CAS  Google Scholar 

  3. Gelb, R.I., Schwartz, L.M., Bradshaw, J.J., Laufer, D.A.: Acid dissociation of cyclohexaamylose and cycloheptaamylose. Bioorg. Chem. 9, 299–304 (1980)

    Article  CAS  Google Scholar 

  4. Gelb, R.I., Schwartz, L.M., Laufer, D.A.: Acid dissociation of cyclooctaamylose. Bioorg. Chem. 11, 274–280 (1982)

    Article  CAS  Google Scholar 

  5. Tollinger, M., Kay, L.E., Forman-Kay, J.D.: Measuring pKa values in protein folding transition state ensembles by NMR spectroscopy. J. Am. Chem. Soc. 127, 8904–8905 (2005)

    Article  CAS  Google Scholar 

  6. Blasko, A., Bunton, C.A., Bunel, S., Ibarra, C., Moraga, E.: Determination of acid dissociation constants of anomers of amino sugars by 1H NMR spectroscopy. Carbohydr. Res. 298, 163–172 (1997)

    Article  CAS  Google Scholar 

  7. Popov, K., Rönkkömäki, H., Lajunen, L.H.J.: Guidelines for NMR measurements for determination of high and low pKa values. Pure Appl. Chem. 78, 663–675 (2006)

    Article  CAS  Google Scholar 

  8. González-Gaitano, G., Rodríguez, P., Isasi, J.R., Guerrero, A., Tardajos, G.: Site-specific interaction between 2-dibenzofuran carboxylate and β- and γ-cyclodextrins determined by intermolecular NOE and molecular modeling. J. Phys. Chem. B 108, 14154–14162 (2004)

    Article  Google Scholar 

  9. González-Gaitano, G., Brown, W., Tardajos, G.: Inclusion complexes between cyclodextrins and triblock copolymers in aqueous solution: a dynamic and static light-scattering study. J. Phys. Chem. B 101, 710–719 (1997)

    Article  Google Scholar 

  10. González-Gaitano, G., Rodríguez, P., Isasi, J.R., Fuentes, M., Tardajos, G., Sánchez, M.: The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 44, 101–105 (2002)

    Article  Google Scholar 

  11. Loftsson, T., Másson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)

    Article  CAS  Google Scholar 

  12. Buvari, A., Barcza, L.: β-Cyclodextrins complexes of different type with inorganic compounds. Inorg. Chim. Acta 33, L179–L180 (1979)

    Article  CAS  Google Scholar 

  13. Sanemasa, I., Fujiki, M., Deguchi, T.: A new method for determining cyclodextrin complex formation constants with electrolytes in aqueous medium. Bull. Chem. Soc. Jpn. 61, 2663–2665 (1988)

    Article  CAS  Google Scholar 

  14. Reale, S., Teixido, E., De Angelis, F.: Study of alkali metal cations binding selectivity of β-cyclodextrin by ESI-MS. Ann. Chim. 95, 375–381 (2005)

    Article  CAS  Google Scholar 

  15. Harris, R.K., Becker, E.D., Cabral de Menezes, S.M., Goodfellow, R., Granger, P.: NMR nomenclature. Nuclear spin properties and conventions for chemical shifts. Pure Appl. Chem. 73, 1795–1818 (2001)

    Article  CAS  Google Scholar 

  16. Mikkelsen, K., Nielsen, S.O.: Acidity measurements with the glass electrode in H2O–D2O mixtures. J. Phys. Chem. 64, 632–637 (1960)

    Article  CAS  Google Scholar 

  17. Glasoe, P.K., Long, F.A.: Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190 (1960)

    Article  CAS  Google Scholar 

  18. Krezel, A., Bal, W.: A formula for correlating pKa values determined in D2O and H2O. J. Inorg. Biochem. 98, 161–166 (2004)

    Article  CAS  Google Scholar 

  19. Baes, C.F., Mesmer, R.E.: The hydrolysis of cations. Wiley, New York (1976)

    Google Scholar 

  20. Keeler, J.: Understanding NMR spectroscopy. Wiley, New York (2005)

    Google Scholar 

  21. Lide, D.R.: Handbook of Chemistry and Physics, 80th ed., pp 8–85. CRC Press, Boston (1999–2000)

  22. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  23. Van der Stegen, J.H.G., Weerdenburg, H., Van der Veen, A.J., Hogendoorn, J.A., Versteeg, G.F.: Application of the Pitzer model for the estimation of activity coefficients of electrolytes in ion selective membranes. Fluid Phase Equilib. 157, 181–196 (1999)

    Article  Google Scholar 

  24. Robinson, R.A.: An isopiestic vapor pressure study of the system potassium chloride-sodium chloride in deuterium oxide solution at 25°C. J. Phys. Chem. 73, 3165–3166 (1969)

    Article  CAS  Google Scholar 

  25. Mukherjee, L.M., Bates, R.G.: Osmotic and activity coefficients at 25 °C for tetraalkylammonium bromides in deuterium oxide. J. Solut. Chem. 14, 255–262 (1985)

    CAS  Google Scholar 

  26. Colson, P., Jennings, H.J., Smith, I.C.P.: Composition, sequence, and conformation of polymers and oligomers of glucose as revealed by carbon-13 nuclear magnetic resonance. J. Am. Chem. Soc. 96, 8081–8087 (1974)

    Article  CAS  Google Scholar 

  27. Schwartz, L.M., Gelb, R.I.: Statistical analysis of titration data. Anal. Chem. 50, 1571–1576 (1978)

    Article  CAS  Google Scholar 

  28. Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrins: an explanation of the abnormal solubility of β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 13, 139 (1992)

    Article  CAS  Google Scholar 

  29. He, Y., Fu, P., Shen, X., Gao, H.: Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516 (2008)

    Article  CAS  Google Scholar 

  30. Lombardo, D., Longo, A., Darcy, R., Mazzaglia, A.: Structural properties of nonionic cyclodextrin colloids in water. Langmuir 20, 1057–1064 (2004)

    Article  CAS  Google Scholar 

  31. Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Lo Nostro, P., Baglioni, P.: Self-assembly of beta-cyclodextrin in water. Part 1. Cryo-TEM and dynamic and static light scattering. Langmuir 22, 1478–1484 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Projects CTQ2006-14933/BQU, MAT2007-65752, UCM-BSCHGR58/08-921628. R. Maeztu also acknowledges doctoral grants from the Gobierno de Navarra and the Asociación de Amigos de la Universidad de Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González-Gaitano.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10847-010-9874-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeztu, R., Tardajos, G. & González-Gaitano, G. Determination of the ionization constants of natural cyclodextrins by high-resolution 1H-NMR and photon correlation spectroscopy. J Incl Phenom Macrocycl Chem 69, 361–367 (2011). https://doi.org/10.1007/s10847-010-9753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9753-0

Keywords

Navigation