Skip to main content
Log in

Indicative response of Oxysternon festivum Linné (Coleoptera: Scarabaidae) to vegetation condition in the basin of the Orinoco river, Venezuela

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

A good indicator species should be easy to sample, identify and measure, and be informative about its ecological context. We analysed data from a nation-wide dung beetle survey in Venezuela in order to assess the indicative response of Oxysternon festivum (Coleoptera: Scarabaeinae) to vegetation and climatic condition in the Orinoco river basin. Our approach consisted of two steps: estimating habitat suitability (HS) from historical records and mean environmental conditions, and analysing four different properties measured during a nationwide survey (occurrence, total abundance, individual body size, and total biomass), in relationship with HS and current environmental covariates measured from remote sensors. O. festivum population status could not be completely explained by historical or current conditions alone, but rather by combinations of both. It was strongly associated with forest vegetation, but abundance, biomass and body size increased under harsher (hotter and drier) climatic conditions. Thus, O. festivum seems to be sensitive to changes in vegetation cover, but tolerant to certain levels of perturbance, where it probably replaces other, more sensitive species. Fully understanding the role of O. festivum requires the analysis of its relationships to other species. We strongly recommend the development of similar protocols for the analysis of other potential ecological indicator species, drawing information from historical and contemporary sources and exploiting the available statistical tools to reveal complex patterns. Given the high diversity of dung beetles, and the growing interest in this group, several candidates will probably be found in most tropical countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso LE, McCullough J, Naskrecki P et al (eds) (2008) A rapid biological assessment of the Konashen community owned conservation area, Southern Guyana. RAP bulletin of biological assessment 51. Conservation International, Arlington

    Google Scholar 

  • Anderson RP, Gonzalez IJ (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811. doi:10.1016/j.ecolmodel.2011.04.011

    Article  Google Scholar 

  • Andresen E, Laurance SGW (2007) Possible indirect effects of mammal hunting on dung beetle assemblages in Panama. Biotropica 39:141–146. doi:10.1111/j.1744-7429.2006.00239.x

    Article  Google Scholar 

  • Arnaud P (2002) Les Coléoptères du Monde, the beetles of the world 28. Phanaeini. Hillside Books, Canterbury

    Google Scholar 

  • Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87. doi:10.1890/070193

    Article  Google Scholar 

  • Brambilla M, Ficetola GF (2012) Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. J Anim Ecol 81:781–787. doi:10.1111/j.1365-2656.2012.01970.x

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Buse J, Šlachta M, Sladecek FXJ et al (2015) Relative importance of pasture size and grazing continuity for the long-term conservation of European dung beetles. Biol Conserv 187:112–119. doi:10.1016/j.biocon.2015.04.011

    Article  Google Scholar 

  • Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61. doi:10.1023/A:1016136723584

    Article  PubMed  Google Scholar 

  • Cayuela L, Golicher D, Newton A et al (2009) Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop Conserv Sci 2:319–352

    Google Scholar 

  • Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10. doi:10.1016/S1470-160X(01)00003-6

    Article  Google Scholar 

  • DeFries RS, Hansen MC, Townshend JRG et al (2000) A new global 1-km dataset of percentage tree cover derived from remote sensing. Glob Chang Biol. doi:10.1046/j.1365-2486.2000.00296.x

    Google Scholar 

  • Edmonds W, Zidek J (2004) Revision of the neotropical dung beetle genus Oxysternon (Scarabaeidae: Scarabaeinae: Phanaeini). Folia Heyrovskyana 11:1–58

    Google Scholar 

  • Fang H, Liang S, McClaran M et al (2005) Biophysical characterization and management effects on semiarid rangeland observed from landsat ETM + data. IEEE Trans Geosci Remote Sens 43:125–134. doi:10.1109/TGRS.2004.839813

    Article  Google Scholar 

  • Feer F (1999) Effects of dung beetles (Scarabaeidae) on seeds dispersed by howler monkeys (Alouatta seniculus) in the French Guianan rain forest. J Trop Ecol 15:129–142

    Article  Google Scholar 

  • Feer F (2000) Les Coléoptères coprophages et -nécrophages de la forêt de Guyanne Française: compostion spécifique et structure des peuplements. Ann la Soc Entomol Fr 36:29–43. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  • Feer F, Pincebourde S (2005) Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J Trop Ecol 21:21–30. doi:10.1017/S0266467404002056

    Article  Google Scholar 

  • Ferrer-Paris JR, Rodríguez JP, Good TC et al (2013a) Systematic, large-scale national biodiversity surveys: NeoMaps as a model for tropical regions. Divers Distrib 19:215–231. doi:10.1111/ddi.12012

    Article  Google Scholar 

  • Ferrer-Paris JR, Sánchez-Mercado A, Paul Rodríguez J (2013b) Optimización del muestreo de invertebrados tropicales: un ejemplo con escarabajos coprófagos (Coleoptera: Scarabaeinae) en Venezuela. Rev Biol Trop (Int J Trop Biol) 61:89–110

    Google Scholar 

  • Filgueiras BKC, Tabarelli M, Leal IR et al (2015) Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land use and fragmentation-related effects. Ecol Indic 55:65–73. doi:10.1016/j.ecolind.2015.02.032

    Article  Google Scholar 

  • Gámez J (2004) Phanaeini (Coleoptera: Scarabaeinae) de la cordillera de Los Andes, depresión de Maracaibo y llanos de Venezuela Materiales y Métodos Área de estudio. Memorias la Fund La Salle Ciencias Nat 158:43–60

    Google Scholar 

  • Gardner TA, Hernández MIM, Barlow J, Peres CA (2007) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–893. doi:10.1111/j.1365-2664.2008.01454.x

    Article  Google Scholar 

  • Gardner TA, Barlow J, Araujo IS et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150. doi:10.1111/j.1461-0248.2007.01133.x

    Article  PubMed  Google Scholar 

  • Gillett CPDT, Gillett MPT, Gillett JEDT, Vaz-de-Mello FZ (2010) Diversity and distribution of the scarab beetle tribe Phanaeini in the northern states of the Brazilian Northeast (Coleoptera: Scarabaeidae: Scarabaeinae). Insecta Mundi 0118:1–19

    Google Scholar 

  • Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, Mexico

    Google Scholar 

  • Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae. Folia Entomol Mex 12–14:1–312

    Google Scholar 

  • Hamel-Leigue AC, Herzog SK, Mann DJ et al (2009) Distribución e Historia Natural de Escarabajos Coprófagos de la Tribu Phaneini (Coleoptera: Scarabaeidae: Scarabaeinae) en Bolivia. Kempffiana 5:43–95

    Google Scholar 

  • Hanski I, Cambefort Y (1991) Beetle ecology. Princeton University Press, New Jersey

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol Int J Clim 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381. doi:10.1111/j.1365-2664.2008.01524.x

    Article  Google Scholar 

  • Holt RD, Lawton JH, Gaston KJ, Blackburn TM (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190. doi:10.2307/3545815

    Article  Google Scholar 

  • Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Hunt J, Simmons LW (2001) Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proc R Soc Lond Ser B 268:2409–2414. doi:10.1098/rspb.2001.1758

    Article  CAS  Google Scholar 

  • IAvH (2013) Escarabajos coprófagos (Coleoptera:Scarabaeidae:Scarabaeinae) de bosques secos colombianos en la Colección Entomológica del Instituto Alexander von Humboldt. In: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://ipt.sibcolombia.net/iavh/resource.do?r=scarabeidae_iavh. Accessed 13 Sep 2013

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305. doi:10.1016/s0169-5347(03)00071-5

    Article  Google Scholar 

  • Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298. doi:10.1111/j.1523-1739.2008.00969.x

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277. doi:10.1111/j.2041-210X.2010.00078.x

    Article  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(80):827–832. doi:10.1126/science.aaa9932

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317–1328. doi:10.1016/j.biocon.2010.02.013

    Article  Google Scholar 

  • Martin TG, Wintle BA, Rhodes JR et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. doi:10.1111/j.1461-0248.2005.00826.x

    Article  PubMed  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201. doi:10.1111/j.1469-185X.1997.tb00029.x

    Article  Google Scholar 

  • Medina CA, Lopera-Toro A, Vítolo A, Gill B (2001) Escarabajos Coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) de Colombia. Biota Colomb 2:131–144

    Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Nichols ES, Gardner TA (2011) Dung beetles as a candidate study taxon in applied biodiversity conservation research. In: Ridsdill-Smith TJ, Simmons LW (eds) Ecology and evolution of dung beetles. Wiley, Oxford, pp 267–292

    Chapter  Google Scholar 

  • Nichols E, Spector S, Louzada J et al (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474. doi:10.1016/j.biocon.2008.04.011

    Article  Google Scholar 

  • Nichols E, Gardner TA, Peres CA, Spector S (2009) Co-declining mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487

    Article  Google Scholar 

  • Nichols L, Uriarte M, Bunker DE et al (2013) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94:180–189

    Article  PubMed  Google Scholar 

  • Nielsen SE, Johnson CJ, Heard DC, Boyce MS (2005) Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history. Ecography (Cop) 28:197–208

    Article  Google Scholar 

  • O’Shea BJ, LE Alonso, Larsen TH (eds) (2011) A rapid biological assessment of the Kwamalasamutu region, Southwestern Suriname. RAP bulletin of biological assessment 63. Conservation International, Arlington

    Google Scholar 

  • ORNL DAAC (2012) MODIS subsetted land products, collection 5. In: Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). Oak Ridge. http://daac.ornl.gov/MODIS/modis.html. Accessed 8 Aug 2015

  • Pacheco TL, Vaz-De-Mello FZ (2015) Dung beetles of the tribe Phanaeini (Coleoptera: Scarabaeidade: Scarabaeinae) from Roraima state, Northern Brazil: checklist and key to species. Biota Neotrop 15:1–9. doi:10.1590/1676-06032015014514

    Article  Google Scholar 

  • Philips K, Pretorius E, Scholtz C (2004) A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebr Syst 18:53–88. doi:10.1071/IS03030

    Article  Google Scholar 

  • Price DL (2009) Phylogeny and biogeography of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae). Syst Entomol 34:137–150. doi:10.1111/j.1365-3113.2008.00443.x

    Article  Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. doi:10.1111/jbi.12227

    Article  Google Scholar 

  • Radtke MG, Da Fonseca CRV, Williamson GB (2010) Dung beetle communities: a neotropical-north temperate comparison. Neotrop Entomol 39:19–27. doi:10.1590/s1519-566x2010000100004

    Article  PubMed  Google Scholar 

  • Rowland JM, Emlen DJ (2009) Two thresholds, three male forms result in facultative male trimorphism in beetles. Science 323:773–776

    Article  CAS  PubMed  Google Scholar 

  • Siddig AAH, Ellison AM, Ochs A et al (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230. doi:10.1016/j.ecolind.2015.06.036

    Article  Google Scholar 

  • Silvius KM, Fragoso JMV (2002) Pulp handling by vertebrate seed dispersers increases palm seed predation by bruchid beetles in the northern Amazon. J Ecol 90:1024–1032. doi:10.1046/j.1365-2745.2002.00728.x

    Article  Google Scholar 

  • Smallegange IM, Johansson J (2014) Life-history differences favor evolution of male dimorphism in competitive games. Am Nat 183:188–198. doi:10.1086/674377

    Article  PubMed  Google Scholar 

  • Taborsky M, Brockmann HJ (2010) Alternative reproductive tactics and life history phenotypes. In: Kappeler P (ed) Animal behaviour: evolution and mechanisms. Springer, Berlin, pp 537–586

    Chapter  Google Scholar 

  • Tjur T (2009) Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am Stat 63:366–372. doi:10.1198/tast.2009.08210

    Article  Google Scholar 

  • Tomkins J, Hazel W (2011) Explaining phenotypic diversity: the conditional strategy and threshold trait expression. In: Ridsdill-Smith TJ, Simmons LW (eds) Ecology and evolution of dung beetles. Wiley, Oxford, pp 107–125

    Chapter  Google Scholar 

  • VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174:282–291. doi:10.1086/600087

    Article  PubMed  Google Scholar 

  • Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730. doi:10.1111/j.1365-2664.2005.01052.x

    Article  Google Scholar 

  • Vaz-De-Mello FZ, Edmonds WD, Ocampo FC, Schoolmeesters P (2011) A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). Zootaxa 73:1–73

    Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z-L (2004) Quality assessment and validation of the MODIS land surface temperature. Int J Remote Sens 25:261–274

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27:1–25

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475. doi:10.1016/S0034-4257(02)00135-9

    Article  Google Scholar 

Download references

Acknowledgments

T Good, A Sanchez-Mercado and H Rojas contributed in the coordination of NeoMaps surveys, and a large group of students and volunteers participated in nation-wide sampling between 2005 and 2010. Funding for NeoMaps was provided by Total Venezuela, S. A. as part of the Program for the Support of the Conservation of the Biodiversity of Venezuela, under the framework of the Ley Orgánica de Ciencia, Tecnología e Innovación (LOCTI), and additional contributions from the Biodiversity Analysis Unit of the Andean Centre for Biodiversity Conservation at Conservation International, the Conservation Technology Support Program, the Venezuelan Fondo Nacional de Ciencia, TecnologÍa e Innovación, Provita and UNESCO. A Solis from INBio, Costa Rica curated the reference collection of NeoMaps and provided taxonomic training for CL. Y Marcano and C Contreras helped with measurement of individuals. J Clavijo, J Camacho and T. R. Barros gently provided assistance at the entomological collections at MIZA, MALUZ and MBLUZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Ferrer-Paris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer-Paris, J.R., Lozano, C., Cardozo-Urdaneta, A. et al. Indicative response of Oxysternon festivum Linné (Coleoptera: Scarabaidae) to vegetation condition in the basin of the Orinoco river, Venezuela. J Insect Conserv 20, 527–538 (2016). https://doi.org/10.1007/s10841-016-9886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9886-6

Keywords

Navigation