Skip to main content
Log in

Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Tetrahydroberberrubine (TU), an active tetrahydroprotoberberines (THPBs), is gaining increasing popularity as a potential candidate for treatment of anxiety and depression. One of its two enantiomers, l-TU, has been reported to be an antagonist of both D1 and D2 receptors, but the functional activity of the other enantiomer, d-TU, is still unknown. In this study, experiments were combined with in silico molecular simulations to (1) confirm and discover the functional activities of l-TU and d-TU, and (2) systematically evaluate the molecular mechanisms beyond the experimental observations. l-TU proved to be an antagonist of both D1 and D2 receptors (IC50 = 385 nM and 985 nM, respectively), while d-TU shows no affinity against either D1 or D2 receptor, based on the cAMP assay (D1 receptor) and calcium flux assay (D2 receptor). Results from both flexible-ligand docking studies and molecular dynamic (MD) simulations provided insights at the atomic level. The l-TU-bound structures predicted by MD (1) undergo an outward rotation of the extracellular helical bundles; (2) have an enlarged orthosteric binding pocket; and (3) have a central toggle switch that is prevented from rotating freely. These features are unique to the l-TU enantiomer and provide an explanation for its antagonistic behavior toward both D1 and D2 receptors. The present study provides new sight on the structural and functional relationships of l-TU and d-TU binding to dopamine receptors, and provides guidance to the rational design of novel molecules targeting these two dopamine receptors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  2. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842. https://doi.org/10.1038/nrd.2017.178

    Article  CAS  PubMed  Google Scholar 

  3. Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser AS, Vroling B, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44(D1):D356–D364. https://doi.org/10.1093/nar/gkv1178

    Article  CAS  PubMed  Google Scholar 

  4. Cooke RM, Brown AJ, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20(11):1355–1364. https://doi.org/10.1016/j.drudis.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  5. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. https://doi.org/10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  6. Jin G (1987) l(−)Tetrahydropalmatine and its analogues as new dopamine receptor antagonists. Trends Pharmacol Sci 8(3):81–82

    Article  CAS  Google Scholar 

  7. Yang K, Jin G, Wu J (2007) The neuropharmacology of (−)-stepholidine and its potential applications. Curr Neuropharmacol 5(4):289–294

    Article  CAS  Google Scholar 

  8. Ellenbroek BA, Zhang XX, Jin GZ (2006) Effects of (−)stepholidine in animal models for schizophrenia. Acta Pharmacol Sin 27(9):1111–1118. https://doi.org/10.1111/j.1745-7254.2006.00365.x

    Article  CAS  PubMed  Google Scholar 

  9. Ge HX, Zhang J, Chen L, Kou JP, Yu BY (2013) Chemical and microbial semi-synthesis of tetrahydroprotoberberines as inhibitors on tissue factor procoagulant activity. Bioorganic Med Chem 21(1):62–69. https://doi.org/10.1016/j.bmc.2012.11.002

    Article  CAS  Google Scholar 

  10. Yu X, Yu S, Chen L, Liu H, Zhang J, Ge H, Zhang Y, Yu B, Kou J (2016) Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-kappaB signaling pathways. Biomed Pharmacother 82:489–497. https://doi.org/10.1016/j.biopha.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  11. Zhao W, Ge H, Liu K, Chen X, Zhang J, Liu B (2017) Nandinine, a derivative of berberine, inhibits inflammation and reduces insulin resistance in adipocytes via regulation of AMP-kinase activity. Planta Med 83(3–04):203–209. https://doi.org/10.1055/s-0042-110576

    Article  CAS  PubMed  Google Scholar 

  12. Mi GY, Liu S, Zhang J, Liang H, Gao Y, Li N, Yu B, Yang H, Yang Z (2017) Levo-tetrahydroberberrubine produces anxiolytic-like effects in mice through the 5-HT1A Receptor. PLoS ONE 12(1):1–13. https://doi.org/10.1371/journal.pone.0168964.g001

    Article  Google Scholar 

  13. Yang Z, Yu BY, Zhang J, Li N, Ge H, Fang T, Jin P (2011) Application of tetrahydroberberrubine in preparing antianxiety agents and antidepressants. CN 101972252 A

  14. Mo JG, Yang YS, Shen JS, Jin GZ, Zhen XC (2007) Recent developments in studies of l-stepholidine and its analogs: chemistry, pharmacology and clinical implications. Curr Med Chem 14(28):2996–3002

    Article  CAS  Google Scholar 

  15. Zhang H, Xue L, Tong J, Zhang C (2010) Study on the chemical resolution of tetrahydroberberrubine. Yaoxue Jinzhan 34(10):459–462

    CAS  Google Scholar 

  16. Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555(7695):269

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  18. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  19. Consortium TU (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169

    Article  Google Scholar 

  20. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–W33

    Article  Google Scholar 

  21. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 47:5.6.1–5.6.32

    Article  Google Scholar 

  22. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

    Article  CAS  Google Scholar 

  23. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  Google Scholar 

  24. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7(1):95–99

    Article  CAS  Google Scholar 

  25. Laskowski RA, Macarthur MW, Moss DS, Thornton J (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  26. Bian Y-m, He X-b, Jing Y-k, Wang L-r, Wang J-m, Xie X-Q (2018) Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacologica Sinica 40:374

    Article  Google Scholar 

  27. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50(3):437–450

    Article  CAS  Google Scholar 

  28. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inform Model 45(1):177–182

    Article  CAS  Google Scholar 

  29. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Kruger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42 (Database issue):D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  30. Bian Y, Feng Z, Yang P, Xie XQ (2017) Integrated in silico fragment-based drug design: case study with allosteric modulators on metabotropic glutamate receptor 5. AAPS J 19(4):1235–1248. https://doi.org/10.1208/s12248-017-0093-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  Google Scholar 

  32. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoil EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  33. Halgen TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  Google Scholar 

  34. Schrödinger (2018) Release 2018-1: LigPrep. Schrödinger, LLC, New York, NY

    Google Scholar 

  35. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  36. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  37. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58. https://doi.org/10.1016/j.bpj.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  Google Scholar 

  39. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  40. Jakalian ABB, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  41. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2016) Gaussian 16, Revision A, 03. Gaussian, Inc., Wallingford

    Google Scholar 

  43. James A. Maier CM, Koushik K, Lauren W, Kevin EH, Carlos S (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  Google Scholar 

  44. Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10(2):865–879. https://doi.org/10.1021/ct4010307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  46. Gotz AW, Williamson MJ, Xu D, Poole D, Grand SL, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salomon-Ferrer R, Gotz AW, Poole D, Grand SL, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J Chem Theory Comput 9(9): 3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  PubMed  Google Scholar 

  48. Case DA, Betz RM, Cerutti DS et al (2016) AMBER. University of California, San Francisco

    Google Scholar 

  49. Darden TY, Pedersen DL (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  50. Essmann UP, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  51. Jean-Paul R, Ciccotti G, Herman JCB (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  52. Jayashree ST, Cheatham TE, Piotr C, Peter AK, David AC (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120(37):9401–9409

    Article  Google Scholar 

  53. Hou TJ, Wang JM, Li YY, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82

    Article  CAS  Google Scholar 

  54. Rocchia W, ALEXOV E, Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105(28):6507–6514

    Article  CAS  Google Scholar 

  55. Ge HX, Zhang J, Dong Y, Cui K, Yu BY (2012) Unique biocatalytic resolution of racemic tetrahydroberberrubine via kinetic glycosylation and enantio-selective sulfation. Chem Commun 48(49):6127. https://doi.org/10.1039/c2cc32175k

    Article  CAS  Google Scholar 

  56. Iwasa K, Cui W, Takahashi T, Nishiyama Y, Kamigauchi M, Koyama J, Takeuchi A, Moriyasu M, Takeda K (2010) Biotransformation of phenolic tetrahydroprotoberberines in plant cell cultures followed by LC–NMR, LC–MS, and LC–CD. J Nat Product 73(2):115–122

    Article  CAS  Google Scholar 

  57. Andra FA, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  Google Scholar 

  58. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein 15(11):2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  Google Scholar 

  59. Ramachandran GN, Ramakrishman C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  60. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21(5):281–306. https://doi.org/10.1007/s10822-007-9114-2

    Article  CAS  PubMed  Google Scholar 

  61. Wang JM, Ge YB, Xie XQ (2019) Development and testing of druglike screening libraries. J Chem Inf Model 59(1):53–65

    Article  CAS  Google Scholar 

  62. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S (2012) Action of molecular switches in GPCRs—theoretical and experimental studies. Curr Med Chem 19(8):1090–1109

    Article  CAS  Google Scholar 

  63. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547(7664):468–471. https://doi.org/10.1038/nature23272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC NO. 21302052) and the National Institutes of Health of USA (R01-GM079383, R21-GM097617, P30-DA035778A1). Computational support from the Center for Research Computing of University of Pittsburgh, Pittsburgh Supercomputing Center (CHE180028P) and the Extreme Science and Engineering Discovery Environment (CHE090098, MCB170099 and MCB180045P), is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixia Ge, Xiang-Qun Xie or Junmei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2728 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Bian, Y., He, X. et al. Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. J Comput Aided Mol Des 33, 447–459 (2019). https://doi.org/10.1007/s10822-019-00194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00194-z

Keywords

Navigation