Skip to main content
Log in

Evolution of acyl-ACP thioesterases and β-ketoacyl-ACP synthases revealed by protein–protein interactions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein–protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners, whereas KSs showed promiscuous behavior across bacterial, plant, and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic cross-linking, and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andre C, Haslam RP, Shanklin J (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci U S A 109:10107–10112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atteia A, Adrait A, Brugière S, Tardif M, Van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor. Mol Biol Evol 26:1533–1548

    Article  CAS  PubMed  Google Scholar 

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS ONE 7(9)

  • Campbell JW, Cronan JE (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332

    Article  CAS  PubMed  Google Scholar 

  • Cantu DC, Chen Y, Reilly PJ (2010) Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci 19:1281–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantu DC, Chen Y, Lemons ML, Reilly PJ (2011) ThYme: a database for thioester-active enzymes. Nucleic Acids Res 39/suppl 1:D342–D346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantu DC, Dai T, Beversdorf ZS, Reilly PJ (2012a) Structural classification and properties of ketoacyl reductases, hydroxyacyl dehydratases, and enoyl reductases. Protein Eng Des Sel 25:803–811

    Article  CAS  PubMed  Google Scholar 

  • Cantu DC, Forrester MJ, Charov K, Reilly PJ (2012b) Acyl carrier protein structural classification and normal mode analysis. Protein Sci 21:655–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Kelly EE, Masluk RP, Nelson CL, Cantu DC, Reilly PJ (2011) Structural classification and properties of ketoacyl synthases. Protein Sci 20:1659–1667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho H, Cronan JE (1993) Escherichia coli thioesterase I, molecular cloning, and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268:9238–9245

    CAS  PubMed  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50

    Article  CAS  PubMed  Google Scholar 

  • Crosby J, Crump MP (2012) The structural role of the carrier protein–active controller or passive carrier. Nat Prod Rep 29:1111–1137

    Article  CAS  PubMed  Google Scholar 

  • Cryle MJ (2010) Selectivity in a barren landscape: the P450BioIACP complex. Biochem Soc Trans 38:934

    Article  CAS  PubMed  Google Scholar 

  • Davies HM, Anderson L, Fan C, Hawkins DJ (1991) Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch Biochem Biophys 290:37–45

    Article  CAS  PubMed  Google Scholar 

  • Davis MS, Cronan JE (2001) Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 183:1499–1503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Lay NR, Cronan JE (2007) In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. J Biol Chem 282:20319–20328

    Article  PubMed  Google Scholar 

  • Dörmann P, Spener F, Ohlrogge JB (1993) Characterization of two acyl-acyl carrier protein thioesterases from developing Cuphea seeds specific for medium-chain- and oleoyl-acyl carrier protein. Planta 189:425–432

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis: complex transcription of the FabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284:29526–29535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florova G, Kazanina G, Reynolds KA (2002) Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. Biochemistry 41:10462–10471

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Google Scholar 

  • Gong Y, Guo X, Wan X, Liang Z, Jiang M (2011) Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum. J Basic Microbiol 51:666–672

    Article  CAS  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  • Guerra DJ, Browse JA (1990) Escherichia coli β-hydroxydecanoyl thioester dehydrase reacts with native C10 acyl-acyl-carrier proteins of plant and bacterial origin. Arch Biochem Biophys 280:336–345

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Kim SY, Suh DY (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701

    Article  CAS  PubMed  Google Scholar 

  • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44 d oi:10.1186/1471-2091-12-44

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaewsuwan S, Bunyapraphatsara N, Cove DJ, Quatrano RS, Chodok P (2010) High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ5-elongase gene. Bioresour Technol 101:4081–4088

    Article  CAS  PubMed  Google Scholar 

  • Kan Y, Pan J (2010) A one-shot solution to bacterial and fungal contamination in the green alga Chlamydomonas reinhardtii culture by using an antibiotic cocktail. J Phycol 46:1356–1358

    Article  CAS  Google Scholar 

  • Kay SA, Lis E, Golden S, Melnick M, Adin DM, Golden JW (2012) Methods and compositions for the production of fatty acids in photosynthetic prokaryotic microorganisms. US Patent Application 2012/0184004 A1

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2006) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  Google Scholar 

  • Kosa NM, Haushalter RW, Smith AR, Burkart MD (2012) Reversible labeling of native and fusion-protein motifs. Nat Methods 9:981–984

    Article  CAS  PubMed  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily: the phosphopantetheinyl transferases. Chem Biol 3:923–936

    Article  CAS  PubMed  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  • Liu X, Sheng J, Curtiss III R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108:6899–6904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: Consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330:539–551

    Article  CAS  PubMed  Google Scholar 

  • McCarthy AD, Hardie DG (1984) Fatty acid synthase—an example of protein evolution by gene fusion. Trends Biochem Sci 9:60–63

    Article  CAS  Google Scholar 

  • Meuser JE, Boyd ES, Ananyev G, Karns D, Radakovits R, Murthy UMN, Ghirardi ML, Dismukes GC, Peters JW, Posewitz MC (2011) Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta 234:829–843

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3)

  • Pymol (2012). The PyMOL Molecular Graphics System, Version 1504 Schrödinger, LLC

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2009)http://tree.bio.ed.ac.uk/software/figtree/

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ryall K, Harper JT, Keeling PJ (2003) Plastid-derived type II fatty acid biosynthetic enzymes in chromists. Gene 313:139–148

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Hamajima A, Ohkuma M, Murakoshi I, Ohmori S, Kawaguchi A, Teeri TH, Cronan Jnr JE (1995) Expression of the Escherichia coli FabA gene encoding beta-hydroxydecanoyl thioester dehydrase and transport to chloroplasts in transgenic tobacco. Transgenic Res 4:60–69

    Article  CAS  PubMed  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    Article  CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srikanta Dani KG, Hatti KS, Ravikumar P, Kush A (2011) Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas. Plant Biol 13:453–461

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29:3625–3639

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volkmann G, Murphy PW, Rowland EE, Cronan JE Jr, Liu XQ, Blouin C, Byers DM (2010) Intein-mediated cyclization of bacterial acyl carrier protein stabilizes its folded conformation but does not abolish function. J Biol Chem 285:8605–8614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worthington AS, Rivera H, Torpey JW, Alexander MD, Burkart MD (2006) Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. ACS Chem Biol 1:687–691

    Article  CAS  PubMed  Google Scholar 

  • Worthington AS, Hur GH, Meier JL, Cheng Q, Moore BS, Burkart MD (2008) Probing the compatibility of type II ketosynthase-carrier protein partners. ChemBioChem 9:2096–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu XH, Rawat R, Shanklin J (2011) Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol 11:97. doi:10.1186/1471-2229-11-97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci U S A 92:10639–10643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinforma 9

  • Zornetzer GA, Tanem J, Fox BG, Markley JL (2010) The length of the bound fatty acid influences the dynamics of the acyl carrier protein and the stability of the thioester bond. Biochemistry 49/3:470–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Strain CY1877 was a generous gift of John E. Cronan (University of Illinois). The plasmid harboring VhACP was a generous gift of Peter Murphy and David Byers (Dalhousie University). This work was supported by California Energy Commission CILMSF 500-10-039; Department of Energy DE-EE0003373; National Institute of Health R01GM094924 and R01GM095970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Burkart.

Additional information

Joris Beld and Jillian L. Blatti contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 8.00 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beld, J., Blatti, J.L., Behnke, C. et al. Evolution of acyl-ACP thioesterases and β-ketoacyl-ACP synthases revealed by protein–protein interactions. J Appl Phycol 26, 1619–1629 (2014). https://doi.org/10.1007/s10811-013-0203-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0203-4

Keywords

Navigation