Skip to main content
Log in

Switchable electrolyte properties and redox chemistry in aqueous media based on temperature-responsive polymers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Macromolecular ionomer solutions exhibiting macroscopic properties that change in response to temperature are referred to as thermally responsive polymer electrolytes (RPEs). Such materials provide a means to control electrochemical systems using an external stimulus that affects the polymer phase behavior and electrolyte properties. RPEs were synthesized with N-isopropylacrylamide, which governs the thermal properties, and varying fractions of acrylic acid, which provides ionic properties. These polymers undergo a thermally activated phase separation in aqueous solutions at a given temperature, thereby altering the ionic strength, pH, and conductivity of the electrolyte solution. In this article, we demonstrate how the molecular properties of RPEs, specifically the ionic composition, influence the temperature-dependent electrolyte properties and the extent to which these electrolytes can control the activity of redox electrodes. Materials with high ionic content provide the highest room temperature ion conductivity and redox activity; however, RPEs with low ionic content provide the highest “on–off” ratio in electrochemical activity at elevated temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Nat Mater 9:101

    Article  Google Scholar 

  2. Yerushalmi R, Scherz A, van der Boom ME, Kraatz H-B (2005) J Mater Chem 15:4480

    Article  CAS  Google Scholar 

  3. Liu F, Urban MW (2010) Prog Polym Sci 35:3

    Article  CAS  Google Scholar 

  4. Gil ES, Hudson SM (2004) Prog Polym Sci 29:1173

    Article  CAS  Google Scholar 

  5. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Prog Polym Sci 35:174

    Article  CAS  Google Scholar 

  6. Nath N, Chilkoti A (2002) Adv Mater 14:1243

    Article  CAS  Google Scholar 

  7. Wandera D, Wickramasinghe SR, Husson SM (2010) J Membr Sci 357:6

    Article  CAS  Google Scholar 

  8. Ahn S-K, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Soft Matter 4:1151

    Article  CAS  Google Scholar 

  9. Mather PT (2007) Nat Mater 6:93

    Article  CAS  Google Scholar 

  10. Hu J, Liu S (2010) Macromolecules 43:8315

    Article  CAS  Google Scholar 

  11. Crespy D, Rossi RM (2007) Polym Int 56:1461

    Article  CAS  Google Scholar 

  12. Hu J, Meng H, Li G, Ibekwe SI (2012) Smart Mater Struct 21:053001

    Article  Google Scholar 

  13. Smela E (2003) Adv Mater 15:481

    Article  CAS  Google Scholar 

  14. Place ES, George JH, Williams CK, Stevens MM (2009) Chem Soc Rev 38:1139

    Article  CAS  Google Scholar 

  15. Alexander C, Shakesheff KM (2006) Adv Mater 18:3321

    Article  CAS  Google Scholar 

  16. Yu L, Ding J (2008) Chem Soc Rev 37:1473

    Article  CAS  Google Scholar 

  17. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  18. Burke AF (2007) Proc IEEE 95:806

    Article  Google Scholar 

  19. Whittingham MS (2008) MRS Bull 33:411

    Article  CAS  Google Scholar 

  20. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  21. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  22. Daly E, Saunders BR (2000) Phys Chem Chem Phys 2:3187

    Article  CAS  Google Scholar 

  23. Urry DW, Gowda DC, Peng SQ, Parker TM, Harris RD (1992) J Am Chem Soc 114:8716

    Article  CAS  Google Scholar 

  24. Huber DL, Manginell RP, Samara MA, Kim BI, Bunker BC (2003) Science 301:352

    Article  CAS  Google Scholar 

  25. Hyun J, Lee WK, Nath N, Chilkoti A, Zauscher S (2004) J Am Chem Soc 126:7330

    Article  CAS  Google Scholar 

  26. de las Heras Alarcon C, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276

    Article  Google Scholar 

  27. Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM (2010) Biomacromolecules 11:1915

    Article  CAS  Google Scholar 

  28. Schmaljohann D (2006) Adv Drug Deliv Rev 58:1655

    Article  CAS  Google Scholar 

  29. Garbern JC, Hoffman AS, Stayton PS (2010) Biomacromolecules 11:1833

    Article  CAS  Google Scholar 

  30. Hong SW, Kim DY, Lee JU, Jo WH (2009) Macromolecules 42:2756

    Article  CAS  Google Scholar 

  31. Liang L, Shi M, Viswanathan VV, Peurrung LM, Young JS (2000) J Membr Sci 177:97

    Article  CAS  Google Scholar 

  32. Kelly JC, Pepin M, Huber DL, Bunker BC, Roberts ME (2012) Adv Mater 24:886

    Article  CAS  Google Scholar 

  33. Liu R, Fraylich M, Saunders B (2009) Colloid Polym Sci 287:627

    Article  CAS  Google Scholar 

  34. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) J Am Chem Soc 127:14505

    Article  CAS  Google Scholar 

  35. Salgado-Rodríguez R, Licea-Claveríe A, Arndt KF (2004) Eur Polym J 40:1931

    Article  Google Scholar 

  36. Jones MS (1999) Eur Polym J 35:795

    Article  CAS  Google Scholar 

  37. Khan A (2007) J Colloid Interface Sci 313:697

    Article  CAS  Google Scholar 

  38. Wallace GG, Spinks GM, Kane-Maguire LAP (2002) Conductive electroactive polymers: intelligent materials systems, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  39. MacDiarmid AG, Yang LS, Huang WS, Humphrey BD (1987) Synth Met 18:393

    Article  CAS  Google Scholar 

  40. Rudzinski WE, Lozano L, Walker M (1990) J Electrochem Soc 137:3132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.E.R. acknowledges partial support from the 3 M Non-Tenured Faculty Grant. A portion of this work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, J.C., Huber, D.L., Price, A.D. et al. Switchable electrolyte properties and redox chemistry in aqueous media based on temperature-responsive polymers. J Appl Electrochem 45, 921–930 (2015). https://doi.org/10.1007/s10800-015-0839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0839-7

Keywords

Navigation