Skip to main content
Log in

Dynamics of Confined Crowd Modelled Using Fermionic Operators

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An operatorial method based on fermionic operators is used to describe the dynamics of a crowd made of different kind of populations mutually interacting and moving in a two–dimensional bounded closed region. The densities of the populations are recovered through the Heisenberg equation and the diffusion process is driven by the Hamiltonian operator defined by requiring that the populations move along optimal paths. We apply the model obtained in a concrete situation and we discuss the effect of the interaction between the populations during their motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baglietto, G., Parisi, D.R.: Continuous-space automaton model for pedestrian dynamics. Phys. Rev. E 83, 056117 (2011)

    Article  ADS  Google Scholar 

  2. Nagai, R., Fukamachi, M., Nagatani, T.: Evacuation of crawlers and walkers from corridor through an exit. Physica A: Stat. Mech. Appl. 367, 449–460 (2006)

    Article  ADS  Google Scholar 

  3. Varas, A., Cornejo, M.D., Mainemer, D., Toledo, B., Rogan, J., Muñoz, V., Valdivia, J.A.: Cellular automaton model for evacuation process with obstacles. Physica A: Stat. Mech. Appl. 2, 631–642 (2007)

    Article  Google Scholar 

  4. Yuan, W., Tan, K.H.: A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment. Physica A: Stat. Mech. Appl. 390, 4210–4218 (2011)

    Article  ADS  Google Scholar 

  5. Chraibi, M., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Am. Inst. Math. Sci. 3, 425–442 (2011)

    MathSciNet  Google Scholar 

  6. Helbing, D., Farkas, I.J, Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  ADS  Google Scholar 

  7. Yang, L.Z., Zhao, D.L., Li, J., Fang, T.Y.: Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Build. Environ. 5, 411–415 (2005)

    Article  Google Scholar 

  8. Guo, R.-Y., Huang, H.J.: Route choice in pedestrian evacuation: formulated using a potential field. J. Stat. Mech. Theory Exp. 4, P04012 (2011)

    Google Scholar 

  9. Henderson, L.F.: The statistics of crowd fluids. Nature 229, 381–383 (1971)

    Article  ADS  Google Scholar 

  10. Bradley, G.E.: A proposed mathematical model for computer prediction of crowd movements and their associated risks. In: Proceedings of the International Conference on Engineering for Crowd Safety, London, UK, 17–18 March, 1993. pp. 303–311. Elsevier, Amsterdam (1993)

  11. Hughes, R.L.: The flow of human crowds. Ann. Rev. Fluid Mech. 35, 169–82 (2003)

    Article  ADS  Google Scholar 

  12. Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28, 1553–67 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bellomo, N., Piccoli, B., Tosin, A.: Modeling crowd dynamics from a complex system viewpoint. Math. Models Methods Appl. Sci. 22(Supp. 2), 1230004 (2012)

    Article  MathSciNet  Google Scholar 

  14. Xiaoping, Z., Zhong, T.K., Liu, M.T.: Study on numeral simulation approaches of crowd evacuation. J. Syst. Simul. 21, 3503–3508 (2009)

    Google Scholar 

  15. Xiaoping, Z., Tingkuan, Z., Mengting, L.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44, 437–445 (2009)

    Article  Google Scholar 

  16. Bagarello, F., Oliveri, F.: An operator description of interactions between populations with applications to migration. Math. Mod. Meth. Appl. Sci. 23, 471–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bagarello, F., Oliveri, F.: Dynamics of closed ecosystems described by operators. Ecol. Model. 275, 89–99 (2014)

    Article  Google Scholar 

  18. Bagarello, F.: Quantum Dynamics for Classical Systems: with Applications of the Number Operator. Wiley (2012)

  19. Bagarello, F.: Few simple rules to fix the dynamics of classical systems using operators. Int. J. Theor. Phys. 51, 2077–2085 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bagarello, F.: Matrix computations for the dynamics of Fermionic systems. Int. J. Theor. Phys. 52, 555–565 (2014)

    Article  Google Scholar 

  22. Bagarello, F.: Damping in quantum love affairs. Physica A 390, 2803–2811 (2011)

    Article  ADS  Google Scholar 

  23. Bagarello, F., Oliveri, F.: An operator-like description of love affairs. SIAM J. Appl. Math. 70, 3235–3251 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gargano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargano, F. Dynamics of Confined Crowd Modelled Using Fermionic Operators. Int J Theor Phys 53, 2727–2738 (2014). https://doi.org/10.1007/s10773-014-2068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2068-y

Keywords

Navigation