Skip to main content
Log in

Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).

    Article  Google Scholar 

  2. M. I. Dyakonov and M. S. Shur, IEEE Trans. Electron Devices 43, 380 (1996).

    Article  Google Scholar 

  3. W. Knap, J. Łusakowski, T. Parenty, S. Bollaert, A. Capy, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).

    Article  Google Scholar 

  4. N. Dyakonova, F. Teppe, J. Łusakowski, W. Knap, M. Levinshtein, A. P. Dmitriev, M. S. Shur, S. Bollaert, and A. Cappy, J. Appl. Phys. 97, 114313 (2005).

    Article  Google Scholar 

  5. W. Knap, F. Teppe, N. Dyakonova, D. Coquillat, and J. Lusakowski, Journal-of-Physics: Condensed-Matter. 20 (38), 384205 (2008).

    Google Scholar 

  6. J.-Q. Lu, M. S. Shur, J. L. Hesler, L. Sun, and R. Weikle, IEEE Electron Device Lett. 19, 373 (1998).

    Article  Google Scholar 

  7. J.-Q. Lu and M. S. Shur, Appl. Phys. Lett. 78, 2587 (2001).

    Article  Google Scholar 

  8. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 81, 4637 (2002).

    Article  Google Scholar 

  9. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. Asif Khan, C. A. Saylor, and L. C. Brunel, J. Appl. Phys. 91, 9346 (2002).

    Article  Google Scholar 

  10. W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel, Appl. Phys. Lett. 80, 3434 (2002).

    Google Scholar 

  11. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).

    Article  Google Scholar 

  12. A. El Fatimy, N. Dyakonova, F. Teppe, W. Knap, N. Pala, R. Gaska, Q. Fareed, X. Hu, D. B. Veksler, S. Rumyantsev, M. S. Shur, D. Seliuta, G. Valusis, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, Electron. Lett. 42, 1342 (2006).

    Article  Google Scholar 

  13. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Łusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 85, 675 (2004).

    Article  Google Scholar 

  14. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 89, 253511 (2006).

    Article  Google Scholar 

  15. A. Lisauskas, U. Pfeiffer, E. Öjefors, P. H. Bolìvar, D. Glaab, and H. G. Roskos, J. Appl. Phys. 105, 114511 (2009).

    Article  Google Scholar 

  16. E. Öjefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, “A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology” to appear in IEEE J. Solid-State Circuits 44 (7), (2009).

  17. M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek, J. Appl. Phys. 104, 024519 (2008).

    Article  Google Scholar 

  18. M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, W. Knap, W. Gwarek, and S. Boubanga, Act. Phys. Pol. A 114, 1337 (2008).

    Google Scholar 

  19. D. B. Veksler, A. V. Muravjov, V. Yu. Kachorovskii, T. A. Elkhatib, K. N. Salama, X. -C. Zhang, and M. S. Shur, Solid-State Electron. 53 (6), 571 (2009).

    Article  Google Scholar 

  20. S. A. Maas, A GaAs MESFET Mixer with Very Low Intermodulation, IEEE Transactions on Microwave Theory and Techniques 35, No. 4 (1987).

    Google Scholar 

  21. H. Zirath, N. Rorsman, A Resisitive HEMT-Mixer with Very Low LO-Power Requirements and Low Intermodulation, 21st European Microwave Conference Proceedings, pp. 1469–1474, EuMC (1991).

  22. H.-G. Krekels, B. Schiek, and E. Menzel, Proc. European Microwave Conf., 174 (1992).

  23. S. Boubanga-Tombet, M. Sakowicz, D. Coquillat, F. Teppe, W. Knap, M. I. Dyakonov, K. Karpierz, J. Łusakowski, and M. Grynberg, Appl. Phys. Lett. (2009), accepted for publication, (http://arxiv.org/abs/0904.2081).

  24. Within the hydrodynamic approach [1], the lhs of Eq. (4) contains an additional “convective” nonlinear term v(∂v/∂x). The hydrodynamic approach is valid when the collisions between electrons are more frequent than collisions with impurities and phonons.

  25. M. I. Dyakonov and A. S. Furman, Sov. Phys. JETP G 65, 574 (1987).

    Google Scholar 

  26. T. Tanigawa, T. Onishi, O. Imafuji, S. Takigawa, and T. Otsuji, “AlGaN/GaN Plasmon-Resonant Terahertz Detectors with On-Chip Patch Antennas”, proceedings of The Conference on Lasers and Electro-Optics (CLEO) 2009.

  27. W. Stillman, M. S. Shur, D. Veksler, S. Rumyantsev, and F. Guarin, Electron. Lett. 43, 422 (2007).

    Article  Google Scholar 

  28. M. Dyakonov, Semiconductors 42, 984 (2008).

    Article  Google Scholar 

  29. V. V. Popov, O. V. Polischuk, W. Knap, and A. El Fatimy, Appl. Phys. Lett. 93, 263503 (2008).

    Article  Google Scholar 

  30. V. Ryzhii, A. Satou, W. Knap, and M. S. Shur, J. Appl. Phys. 99, 084507 (2006).

    Article  Google Scholar 

  31. I. Khmyrova and Yu Seijyou, Appl. Phys. Lett. 91, 143515 (2007).

    Article  Google Scholar 

  32. A. Shchepetov, C. Gardès, Y. Roelens, A. Cappy, S. Bollaert, S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, D. Seliuta, R. Vadoklis, and G. Valušis, Appl. Phys. Lett. 92, 242105 (2008).

    Article  Google Scholar 

  33. S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardès, Y. Roelens, S. Bollaert, D. Seliuta, R. Vadoklis, and G. Valušis, Appl. Phys. Lett. 92, 212101 (2008).

    Article  Google Scholar 

  34. D. Veksler, F. Teppe, A. P. Dmitriev, V. Yu, W. K. Kachorovskii, and M. S. Shur, Phys. Rev. B 73, 125328 (2006).

    Article  Google Scholar 

  35. F. Teppe, D. Veksler, V. Yu, A. P. Kachorovski, S. R. Dmitriev, W. Knap, and M. S. Shur, Appl. Phys. Lett. 87, 052107 (2005).

    Article  Google Scholar 

  36. F. Teppe, D. Veksler, V. Yu, A. P. Kachorovski, A. P. Dmitriev, X.-C. Zhang, S. Rumyantsev, W. Knap, and M. S. Shur, Appl. Phys. Lett. 87, 022102 (2005).

    Article  Google Scholar 

  37. F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, Appl. Phys. Lett. 89, 222109 (2006).

    Article  Google Scholar 

  38. G. R. Aizin, V. V. Popov, and O. V. Polischuk, Appl. Phys. Lett. 89, 143512 (2006).

    Article  Google Scholar 

  39. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, and N. J. M. Horing, J. Appl. Phys. 94, 3556 (2003).

    Article  Google Scholar 

  40. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys. Lett. 81, 1627 (2002).

    Article  Google Scholar 

  41. E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 90, 181127 (2007).

    Article  Google Scholar 

  42. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, Opt. Express 14, 4815 (2006).

    Article  Google Scholar 

  43. T. Otsuji, Y. M. Meziani, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, Appl. Phys. Lett. 89, 263502 (2006).

    Article  Google Scholar 

  44. Y. M. Meziani, T. Otsuji, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, Appl. Phys. Lett. 90, 061105 (2007).

    Article  Google Scholar 

  45. D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, W. Knap, Y. M. Meziani, T. Nishimura, and T. Otsuji, to be submitted to J. Appl. Phys. (2009).

  46. A. Lisauskas, W. von Spiegel, S. Boubanga, A. El Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, Electr. Lett. 44, 408 (2008).

    Article  Google Scholar 

  47. S. Nadar, H. Videlier, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, G. Valusis, D. Seliuta, and I. Kasalynas, to be submitted to J. Appl. Phys. (2009).

  48. A. El Fatimy, J.C. Delagnes, E. Abraham, E. Nguema, P. Mounaix, F. Teppe, and W. Knap, ICIMW, p1-2 10.1109 4665764 (2008)

  49. U.R. Pfeiffer, E. Öjefors, A. Lisauskas, D. Glaab, and H.G. Roskos "A CMOS Focal-Plane Array for Heterodyne Terahertz Imaging" to appear in the Digest of IEEE Radio Frequency Integrated Circuits Symposium 2009.

  50. A. W. Min Lee and Q. Hu, Optics Letters 30, 2563 (2005).

    Article  Google Scholar 

  51. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, IEEE Photonics Technol. Lett. 18, 1415 (2006).

    Article  Google Scholar 

  52. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Opt. Lett. 33, 440 (2008).

    Article  Google Scholar 

  53. I. Kasalynas, A. J. L. Adam, T. O. Klaassen, J. N. Hovenier, G. Pandraud, V. P. Iordanov, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 14, 363 (2008).

    Article  Google Scholar 

  54. I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, K. Köhler, and G. Valušis, Electron. Lett. 45, 833 (2009).

    Article  Google Scholar 

  55. D. Seliuta, I. Kašalynas, V. Tamošiūnas, S. Balakauskas, Z. Martūnas, S. Ašmontas, G. Valušis, A. Lisauskas, H. G. Roskos, and K. Köhler, Electron. Lett. 42, 825 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank prof. T. Skotnicki (ST Microelectronics) for providing the Silicon FETs, prof. A. Cappy and prof. S. Bollaert (IEMN, Lille) for providing InGaAs HEMTs. We thank also dr. P. Mounaix and dr. E. Abraham (LPMOH CNRS and Bordeaux I University) for their experimental support in the time domain spectroscopy. This work was financially supported in part by JSPS International Fellowship Program for Research in Japan, by the joint French-Lithuanian research program “Gilibert/EGIDE.”, and by the joint French-Japanese research program “Sakura/EGIDE.”. JŁ, WK and KK acknowledge the support of 162/THz/2006/02 and MTKD-CT-2005-029671 grants. The authors from the Montpellier University acknowledge the CNRS guiding GDR and GDR-E projects “Semiconductor sources and detectors of THz frequencies” and the Region of Languedoc-Roussillon through the “Terahertz Platform” project, as well as ANR TeraGaN project. Experiments at Vilnius were conducted under the project “Terahertz optoelectronics: devices and applications” (No. 179 J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Knap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knap, W., Dyakonov, M., Coquillat, D. et al. Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. J Infrared Milli Terahz Waves 30, 1319–1337 (2009). https://doi.org/10.1007/s10762-009-9564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9564-9

Keywords

Navigation