Skip to main content

Advertisement

Log in

An Early Life Mucosal Insult Temporarily Decreases Acute Oxazolone-Induced Inflammation in Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammatory priming of immune cells in early life may optimize the response to a subsequent inflammatory challenge later in life. To prime the immune cells in the gut in vivo through a short inflammatory insult, we administered a low dose of dextran sulfate sodium (DSS) to 5-weeks-old BALB/c mice in the drinking water. We hypothesized that DSS-primed mice would show decreased inflammation and difference in immunological profiling, when subjected to presensitizing and oxazolone-induced colitis by rectal instillation at 9 weeks compared to non-DSS-primed control mice. In fact, this low-dose DSS priming apparently decreased the acute inflammation, as colitis scores along with IFNγ, IL-1ß, and IL-4 were significantly decreased with the same tendency for IL-5, TNFα, and IL-2 on day 3 post-induction compared to control mice. On day 7, both DSS-primed and control mice had significantly higher numbers of FoxP3+CD8+ regulatory T cells, while they did not differ in any inflammation parameters. No significant differences were found for intraepithelial lymphocytes or mesenteric lymphocytes at any time point after colitis induction. In conclusion, the priming did decrease local acute tissue inflammation of the colon in this commonly applied mouse model of T helper cell type 2-dominated model of inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Candidatus Savagella is the correct name for segmented filamentous bacteria (SFB) in mammals. Candidatus Arthromitus was the original name for all SFBs, and therefore, this is the name, which frequently appears from the databases after sequencing. However, Candidatus Arthromitus are related to Lachnospiraceae and only found in arthropods, while Candidatus Savagella are related to Clostridiaceae and are only found in vertebrates [34].

References

  1. Bendtsen, Katja M., Line Fisker, Axel K. Hansen, Camilla H.F. Hansen, and Dennis S. Nielsen. 2015. The influence of the young microbiome on inflammatory diseases—lessons from animal studies. Birth Defects Research. Part C, Embryo Today : Reviews 105: 278–295. https://doi.org/10.1002/bdrc.21116.

    Article  CAS  Google Scholar 

  2. Hansen, Camilla Hartmann Friis, Dennis Sandris Nielsen, Miloslav Kverka, Zuzana Zakostelska, Klara Klimesova, Tomas Hudcovic, Helena Tlaskalova-Hogenova, and Axel Kornerup Hansen. 2012. Patterns of early gut colonization shape future immune responses of the host. PLoS One 7: e34043. https://doi.org/10.1371/journal.pone.0034043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hrncir, Tomas, Renata Stepankova, Hana Kozakova, Tomas Hudcovic, and Helena Tlaskalova-Hogenova. 2008. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunology 9: 65. https://doi.org/10.1186/1471-2172-9-65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Derrien, M., M.C. Collado, K. Ben-Amor, S. Salminen, and W.M. de Vos. 2008. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology 74: 1646–1648.

    Article  PubMed  CAS  Google Scholar 

  5. Derrien, M., Baarlen P. Van, G. Hooiveld, E. Norin, M. Muller, and W.M. de Vos. 2011. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Frontiers in Microbiology 2: 166.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hansen, C.H.F., L. Krych, D.S. Nielsen, F.K. Vogensen, L.H. Hansen, S.J. Sørensen, and A.K. Hansen. 2012. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in non-obese diabetic (NOD) mice. Diabetologia 55: 2285–2294.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, Christopher T., Austin G. Davis-Richardson, Adriana Giongo, Kelsey A. Gano, David B. Crabb, Nabanita Mukherjee, George Casella, et al. 2011. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. Edited by Roy Martin Roop. PLoS ONE 6. Public Library of Science: e25792. https://doi.org/10.1371/journal.pone.0025792.

  8. Hänninen, Arno, Raine Toivonen, Sakari Pöysti, Clara Belzer, Hubert Plovier, Janneke P Ouwerkerk, Rohini Emani, Patrice D Cani, and Willem M De Vos. 2017. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. BMJ Publishing Group: gutjnl-2017-314508. https://doi.org/10.1136/gutjnl-2017-314508.

  9. Png, C.W., S.K. Linden, K.S. Gilshenan, E.G. Zoetendal, C.S. McSweeney, L.I. Sly, M.A. McGuckin, and T.H. Florin. 2010. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. The American Joural of Gastroenterology 105: 2420–2428.

    Article  CAS  Google Scholar 

  10. Wang, L., C.T. Christophersen, M.J. Sorich, J.P. Gerber, M.T. Angley, and M.A. Conlon. 2011. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology 77: 6718–6721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Murphy, Eileen F., Paul D. Cotter, Aileen Hogan, Orla O’Sullivan, Andy Joyce, Fiona Fouhy, Siobhan F. Clarke, et al. 2013. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62: 220–226. https://doi.org/10.1136/gutjnl-2011-300705.

    Article  PubMed  Google Scholar 

  12. Bendtsen, K.M., C.H.F. Hansen, Ł. Krych, K. Skovgaard, W. Kot, F.K. Vogensen, and A.K. Hansen. 2017. Immunological effects of reduced mucosal integrity in the early life of BALB/c mice. PLoS One 12: e0176662. https://doi.org/10.1371/journal.pone.0176662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ivanov, I.I., Rde L. Frutos, N. Manel, K. Yoshinaga, D.B. Rifkin, R.B. Sartor, B.B. Finlay, and D.R. Littman. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host & Microbe 4: 337–349.

    Article  CAS  Google Scholar 

  14. Dieleman, L.A., B.U. Ridwan, G.S. Tennyson, K.W. Beagley, R.P. Bucy, and C.O. Elson. 1994. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107: 1643–1652.

    Article  PubMed  CAS  Google Scholar 

  15. Bendtsen, Katja M., Camilla H.F. Hansen, Lukasz Krych, Karsten Buschard, Helene Farlov, and Axel K. Hansen. 2017. Effect of early-life gut mucosal compromise on disease progression in NOD mice. Comparative Medicine 67: 388–399.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Podolsky, Daniel K. 2002. Inflammatory bowel disease. New England Journal of Medicine 347: 417–429. https://doi.org/10.1056/NEJMra020831.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, Jian, Jingbo Zhao, Toshiya Nakaguchi, and Hans Gregersen. 2009. Biomechanical changes in oxazolone-induced colitis in BALB/C mice. Journal of Biomechanics 42: 811–817. https://doi.org/10.1016/j.jbiomech.2009.01.028.

    Article  PubMed  Google Scholar 

  18. Fontenot, Jason D., Marc A. Gavin, and Alexander Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4: 330–336. https://doi.org/10.1038/ni904.

    Article  PubMed  CAS  Google Scholar 

  19. Churlaud, Guillaume, Fabien Pitoiset, Fadi Jebbawi, Roberta Lorenzon, Bertrand Bellier, Michelle Rosenzwajg, and David Klatzmann. 2015. Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy. Frontiers in Immunology 6. Frontiers Media S.A.: 171. https://doi.org/10.3389/fimmu.2015.00171.

  20. Paul, S., Shilpi, and G. Lal. 2015. Role of gamma-delta (γδ) T cells in autoimmunity. Journal of Leukocyte Biology 97: 259–271. https://doi.org/10.1189/jlb.3RU0914-443R.

    Article  PubMed  CAS  Google Scholar 

  21. Kühl, Anja a, Nina N. Pawlowski, Katja Grollich, Christoph Loddenkemper, Martin Zeitz, and Jörg C. Hoffmann. 2007. Aggravation of intestinal inflammation by depletion/deficiency of gammadelta T cells in different types of IBD animal models. Journal of Leukocyte Biology 81: 168–175. https://doi.org/10.1189/jlb.1105696.

    Article  PubMed  Google Scholar 

  22. Ye, Yuefang, Min Yue, Xi Jin, Shaohua Chen, and Youming Li. 2012. The effect of oral tolerance on the roles of small intestinal intraepithelial lymphocytes in murine colitis induced by dextran sodium sulfate. International Journal of Colorectal Disease 27: 583–593. https://doi.org/10.1007/s00384-011-1354-x.

    Article  PubMed  Google Scholar 

  23. Nowarski, Roni, Ruaidhrí Jackson, Nicola Gagliani, Marcel R. De Zoete, Noah W. Palm, Will Bailis, Jun Siong Low, et al. 2015. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163: 1444–1456. https://doi.org/10.1016/j.cell.2015.10.072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schoenborn, Jamie R., and Christopher B. Wilson. 2007. Regulation of interferon-γ during innate and adaptive immune responses. Advances in Immunology 96. Academic Press: 41–101. https://doi.org/10.1016/S0065-2776(07)96002-2.

  25. Arango Duque, Guillermo, and Albert Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology 5. Frontiers Media S.A.: 491. https://doi.org/10.3389/fimmu.2014.00491.

  26. Crow, Mary K., Timothy B. Niewold, and Kyriakos A. Kirou. 2013. Cytokines and interferons in lupus. In Dubois’ Lupus Erythematosus and Related Syndromes, 62–75. Elsevier. https://doi.org/10.1016/B978-1-4377-1893-5.00007-8.

  27. Smiley, Stephen T., and Michael J. Grusby. 1998. Interleukin 4. In Encyclopedia of immunology, 1451–1453. Elsevier. https://doi.org/10.1006/rwei.1999.0368.

  28. Greenfeder, Scott, Shelby P Umland, Francis M Cuss, Richard W Chapman, and Robert W Egan. 2001. Th2 cytokines and asthma—the role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2. BioMed Central: 71–79. https://doi.org/10.1186/rr41.

  29. Harrison, O.J., N. Srinivasan, J. Pott, C. Schiering, T. Krausgruber, N.E. Ilott, and K.J. Maloy. 2015. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3(+) Treg cell function in the intestine. Mucosal Immunology 8: 1226–1236. https://doi.org/10.1038/mi.2015.13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Holmkvist, P., K. Roepstorff, H. Uronen-Hansson, C. Sandén, S. Gudjonsson, O. Patschan, O. Grip, et al. 2015. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality. Mucosal Immunology 8: 545–558. https://doi.org/10.1038/mi.2014.87.

    Article  PubMed  CAS  Google Scholar 

  31. Pizarro, T.T., M.H. Michie, M. Bentz, J. Woraratanadharm, M.F. Smith, E. Foley, C.A. Moskaluk, S.J. Bickston, and F. Cominelli. 1999. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. Journal of immunology (Baltimore, Md. : 1950) 162: 6829–6835. https://doi.org/10.1016/S0016-5085(98)84319-9.

    Article  CAS  Google Scholar 

  32. Du, Zhengyu, Tomas Hudcovic, Jakub Mrazek, Hana Kozakova, Dagmar Srutkova, Martin Schwarzer, Helena Tlaskalova-Hogenova, Martin Kostovcik, and Miloslav Kverka. 2015. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathogens 7: 32. https://doi.org/10.1186/s13099-015-0080-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wirtz, S., and M.F. Neurath. 2007. Mouse models of inflammatory bowel disease. Advanced Drug Delivery Reviews 59: 1073–1083.

    Article  PubMed  CAS  Google Scholar 

  34. Thompson, C.L., A. Mikaelyan, and A. Brune. 2013. Immune-modulating gut symbionts are not “candidatus Arthromitus”. Mucosal Immunology. 6: 200–201. https://doi.org/10.1038/mi.2012.91.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was funded by the Novo Nordisk Life Pharm In Vivo Pharmacology Centre (www.lifepharm.dk) and Gut, Grain and Greens (www.3g-center.dk) under the Danish Innovation Fund. Funders did not take part in planning, performing, or publishing.

Author information

Authors and Affiliations

Authors

Contributions

KMB: data collection, analysis, and manuscript; PT: FACS, AKH: data analysis and manuscript.

Corresponding author

Correspondence to Axel K. Hansen.

Ethics declarations

The study was carried out in accordance with Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes, as well as the Danish Animal Experimentation Act (LBK 474 15/05/2014). Specific approval was granted by the Animal Experiments Inspectorate under the Ministry of Environment and Food in Denmark.

Conflict of Interest

The authors declare that they have no conflict of interests.

Electronic Supplementary Material

Supplementary Figure 1

Subcategories of colitis scores. The test mice were pre-treated with 1.5% DSS in age-week five, sensitized in age-week nine, induced with oxazolone five days later, and evaluated on day 3 and 7 post-colitis induction (DSS-Oxa), and compared to control mice with no pre-treatment with DSS (Oxa). The figure visualizes the number of mice given each score within the subcategories. (GIF 287 kb)

High resolution image (TIFF 1658 kb)

Supplementary table 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendtsen, K.M., Tougaard, P. & Hansen, A.K. An Early Life Mucosal Insult Temporarily Decreases Acute Oxazolone-Induced Inflammation in Mice. Inflammation 41, 1437–1447 (2018). https://doi.org/10.1007/s10753-018-0790-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0790-y

KEY WORDS

Navigation