Skip to main content
Log in

TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV−) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deivendran, S., K.H. Marzook, and P.M. Radhakrishna. 2014. The role of inflammation in cervical cancer. Advances in Experimental Medicine and Biology 816: 377–399.

    Article  CAS  PubMed  Google Scholar 

  2. Parida, S., and M. Mandal. 2014. Inflammation induced by human papillomavirus in cervical cancer and its implication in prevention. European Journal of Cancer Prevention : the Official Journal of the European Cancer Prevention Organisation 23: 432–448.

    Article  CAS  Google Scholar 

  3. Roque, D.R., W.Z. Wysham, and J.T. Soper. 2014. The surgical management of cervical cancer: an overview and literature review. Obstetrical & Gynecological Survey 69: 426–441.

    Article  Google Scholar 

  4. Kavallaris, A., D. Zygouris, A. Dafopoulos, I. Kalogiannidis, and E. Terzakis. 2015. Nerve sparing radical hysterectomy in early stage cervical cancer. Latest Developments and Review of the Literature. European Journal Of Gynaecological Oncology 36: 5–9.

    CAS  PubMed  Google Scholar 

  5. Oblak, A., and R. Jerala. 2011. Toll-like receptor 4 activation in cancer progression and therapy. Clinical & Developmental Immunology 2011: 609579.

    Article  Google Scholar 

  6. Wang, Y., Y. Weng, Y. Shi, X. Xia, S. Wang, and H. Duan. 2014. Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. The Journal of Membrane Biology 247: 591–599.

    Article  CAS  PubMed  Google Scholar 

  7. Nishimura, M., and S. Naito. 2005. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biological & Pharmaceutical Bulletin 28: 886–892.

    Article  CAS  Google Scholar 

  8. Yu, L., L. Wang, M. Li, J. Zhong, Z. Wang, and S. Chen. 2010. Expression of toll-like receptor 4 is down-regulated during progression of cervical neoplasia. Cancer Immunology, Immunotherapy: CII 59: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  9. Hasan, U.A., E. Bates, F. Takeshita, A. Biliato, R. Accardi, V. Bouvard, M. Mansour, I. Vincent, L. Gissmann, T. Iftner, M. Sideri, F. Stubenrauch, and M. Tommasino. 2007. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. Journal of Immunology 178: 3186–3197.

    Article  CAS  Google Scholar 

  10. Kumazawa, Y., H. Takimoto, T. Matsumoto, and K. Kawaguchi. 2014. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Current Pharmaceutical Design 20: 857–863.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Z., S. Zheng, L. Li, and H. Jiang. 2014. Metabolism of flavonoids in human: a comprehensive review. Current Drug Metabolism 15: 48–61.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, L., K.F. Allred, L. Dykes, C.D. Allred, and J.M. Awika. 2015. Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food & Function 6: 749–755.

    Article  CAS  Google Scholar 

  13. Bao, C., H. Namgung, J. Lee, H.C. Park, J. Ko, H. Moon, H.W. Ko, and H.J. Lee. 2014. Daidzein suppresses tumor necrosis factor-alpha induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells. Journal of Agricultural and Food Chemistry 62: 3759–3767.

    Article  CAS  PubMed  Google Scholar 

  14. Moskot M, Jakobkiewicz-Banecka J, Smolinska E, Piotrowska E, Wegrzyn G, Gabig-Ciminska M. (2015). Effects of flavonoids on expression of genes involved in cell cycle regulation and DNA replication in human fibroblasts. Molecular and Cellular Biochemistry.

  15. Devi, K.P., D.S. Malar, S.F. Nabavi, A. Sureda, J. Xiao, S.M. Nabavi, and M. Daglia. 2015. Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research: The Official Journal of the Italian Pharmacological Society 99: 1–10.

    Article  CAS  Google Scholar 

  16. Rafacho, B.P., C.P. Stice, C. Liu, A.S. Greenberg, L.M. Ausman, and X.D. Wang. 2015. Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice. Hepatobiliary Surgery and Nutrition 4: 124–134.

    PubMed Central  PubMed  Google Scholar 

  17. Hussain, J., L. Ali, A.L. Khan, N.U. Rehman, F. Jabeen, J.S. Kim, and A. Al-Harrasi. 2014. Isolation and bioactivities of the flavonoids morin and morin-3-O-beta-D-glucopyranoside from Acridocarpus orientalis—a wild Arabian medicinal plant. Molecules 19: 17763–17772.

    Article  PubMed  Google Scholar 

  18. Patel K, Singh GK, Patel DK. 2014. A review on pharmacological and analytical aspects of naringenin. Chinese Journal of Integrative Medicine.

  19. Srinivasan A, Thangavel C, Liu Y, Shoyele S, Den RB, Selvakumar P, Lakshmikuttyamma A. (2015). Quercetin regulates beta-catenin signaling and reduces the migration of triple negative breast cancer. Molecular Carcinogenesis.

  20. Ge W, Yin Q, Xian H. 2015. Wogonin induced mitochondrial dysfunction and endoplasmic reticulum stress in human malignant neuroblastoma cells via IRE1alpha-dependent pathway. Journal of Molecular Neuroscience: MN.

  21. Zhang, Y., L. Zhao, X. Li, Y. Wang, J. Yao, H. Wang, F. Li, Z. Li, and Q. Guo. 2014. V8, a newly synthetic flavonoid, induces apoptosis through ROS-mediated ER stress pathway in hepatocellular carcinoma. Archives of Toxicology 88: 97–107.

    Article  PubMed  Google Scholar 

  22. Husseinzadeh, N., and S.M. Davenport. 2014. Role of toll-like receptors in cervical, endometrial and ovarian cancers: a review. Gynecologic Oncology 135: 359–363.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Q., K. Zhu, and H. Cheng. 2013. Toll-like receptors in human papillomavirus infection. Archivum Immunologiae et Therapiae Experimentalis 61: 203–215.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, M.S., Y. Bak, Y.S. Park, D.H. Lee, J.H. Kim, J.W. Kang, H.H. Song, S.R. Oh, and Y. Yoon do. 2013. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells. Cell Biology and Toxicology 29: 259–272.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, L., H.W. Zhang, R. Hu, Y. Yang, Q. Qi, N. Lu, W. Liu, Y.Y. Chu, Q.D. You, and Q.L. Guo. 2009. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 87: 933–942.

    Article  CAS  PubMed  Google Scholar 

  26. He, F., Q. Wang, X.L. Zheng, J.Q. Yan, L. Yang, H. Sun, L.N. Hu, Y. Lin, and X. Wang. 2012. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports 28: 601–605.

    CAS  PubMed  Google Scholar 

  27. Shrimali, D., M.K. Shanmugam, A.P. Kumar, J. Zhang, B.K. Tan, K.S. Ahn, and G. Sethi. 2013. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Letters 341: 139–149.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, Y.X., X.Y. Qi, J.L. Huang, M. Hu, L.M. Zhou, B.S. Li, and X.X. Xu. 2012. Toll-like receptor 4 signaling promotes the immunosuppressive cytokine production of human cervical cancer. European Journal of Gynaecological Oncology 33: 291–294.

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiqin He or Yunzhao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Ji, R., Shao, J. et al. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells. Inflammation 39, 172–181 (2016). https://doi.org/10.1007/s10753-015-0236-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0236-8

KEY WORDS

Navigation