Skip to main content
Log in

Interaction of Serine Proteases from Polymorphonuclear Leucocytes with the Cell Surface and Heparin

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Polymorphonuclear leucocytes (PMNs) accumulate at inflammatory sites and contribute to host defence, regulation of the inflammatory process, and also to tissue injury. Upon activation, these cells release the serine proteases elastase, cathepsin G, and proteinase 3 that are involved in multiple processes such as microbicidal activity, penetration of PMNs through endothelium and adjacent connective tissue to inflammatory sites, and processing of various cytokines. Here, we compared the three serine proteases for their release from PMNs and their ability to interact with resting PMNs and the highly sulphated glycosaminoglycan heparin. Unlike elastase, proteinase 3 and cathepsin G were released from resting PMNs as evidenced by flow cytometry, confocal fluorescence microscopy, and activity measurements. While proteinase 3 binds heavily to surface targets on vital PMNs, cathepsin G and elastase interact preferentially with sulphated glycosaminoglycans. These data revealed a differentiated picture about the individual functions of the PMN serine proteases during inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Muller, W.A. 2002. Leukocyte-endothelial cell interactions in the inflammatory response. Laboratory Investigation 82: 521–533.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor, K.R., and R.L. Gallo. 2006. Glycosaminoglycans and their proteoglycans: host-associated molecular pattern for initiation and modulation of inflammation. The FASEB Journal 20: 9–22.

    Article  PubMed  CAS  Google Scholar 

  3. Fadok, V.A., D.L. Bratton, A. Konowal, P.W. Freed, J.Y. Westcott, and P.M. Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-ß, PGE2, and PAF. The Journal of Clinical Investigation 101: 890–898.

    Article  PubMed  CAS  Google Scholar 

  4. Fadeel, B. 2003. Programmed cell clearance. Cellular and Molecular Life Sciences 60: 2575–2585.

    Article  PubMed  CAS  Google Scholar 

  5. Walker, A., C. Ward, E.L. Taylor, I. Dransfield, S.P. Hart, C. Haslett, and A.G. Rossi. 2005. Regulation of neutrophil apoptosis and removal of apoptotic cells. Current Drug Targets. Inflammation and Allergy 4: 447–454.

    Article  PubMed  CAS  Google Scholar 

  6. Krysko, D.V., K. D’Herde, and P. Vandenabeele. 2006. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11: 1709–1726.

    Article  PubMed  Google Scholar 

  7. Erwig, L.-P., and P.M. Henson. 2007. Immunological consequences of apoptotic cell phagocytosis. The American Journal of Pathology 171: 2–8.

    Article  PubMed  CAS  Google Scholar 

  8. Vandivier, R.W., P.M. Henson, and I.S. Douglas. 2006. Burying the dead. The impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129: 1673–1682.

    Article  PubMed  Google Scholar 

  9. Meyer-Hoffert, U. 2009. Neutrophil-derived serine proteases modulate innate immune response. Frontiers in Bioscience 14: 409–3418.

    Google Scholar 

  10. Kessenbrock, K., T. Dau, and D.E. Jenne. 2011. Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response. Journal of Molecular Medicine 89: 23–28.

    Article  PubMed  Google Scholar 

  11. Pham, C.T.N. 2006. Neutrophil serine proteases: specific regulators of inflammation. Nature Reviews. Immunology 6: 541–550.

    Article  PubMed  CAS  Google Scholar 

  12. Kantari, C., M. Pederzoli-Ribeil, O. Amir-Moazami, V. Gausson-Dorey, I. Cruz Moura, M.-C. Lecomte, M. Benhoume, and V. Witko-Sarsat. 2007. Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 110: 4086–4095.

    Article  PubMed  CAS  Google Scholar 

  13. Frommherz, K.J., B. Faller, and J.G. Bieth. 1991. Heparin strongly decreases the rate of inhibition of neutrophil elastase by α1-proteinase inhibitor. The Journal of Biological Chemistry 266: 15356–15362.

    PubMed  CAS  Google Scholar 

  14. Ermolieff, J., C. Boudier, A. Laine, B. Meyer, and J.G. Bieth. 1994. Heparin protects cathepsin G against inhibition by protein proteinase inhibitors. The Journal of Biological Chemistry 269: 29502–29508.

    PubMed  CAS  Google Scholar 

  15. Korkmaz, B., J. Jaillet, M.-L. Jourdan, A. Gauthier, F. Gauthier, and S. Attucci. 2009. Catalytic activity and inhibition of Wegener antigen proteinase 3 on the cell surface of human polymorphonuclear neutrophils. The Journal of Biological Chemistry 284: 19896–19902.

    Article  PubMed  CAS  Google Scholar 

  16. Hu, N., J. Westra, and C.G.M. Kallenberg. 2009. Membrane-bound proteinase 3 and its receptors: relevance for the pathogenesis of Wegener’s granulomatosis. Autoimmunity Reviews 8: 510–514.

    Article  PubMed  CAS  Google Scholar 

  17. Coakley, R.J., C. Taggart, S. O’Neill, and N.G. McElvaney. 2001. Alpha1-antitrypsin deficiency: biological answers to clinical questions. The American Journal of the Medical Sciences 321: 33–41.

    Article  PubMed  CAS  Google Scholar 

  18. Erlanger, B.F., N. Kokowsky, and W. Cohen. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics 95: 271–278.

    Article  PubMed  CAS  Google Scholar 

  19. Lominadze, G., D.W. Powell, G.C. Luerman, A.J. Link, R.A. Ward, and K.R. McLeish. 2005. Proteomic analysis of human neutrophil granules. Molecular & Cellular Proteomics 4: 1503–1521.

    Article  CAS  Google Scholar 

  20. Csernok, E., J. Lüdemann, W.L. Gross, and D.F. Bainton. 1990. Ultrastructural localization of proteinase 3, the target antigen of anti-cytoplasmic antibodies circulating in Wegener’s granulomatosis. The American Journal of Pathology 137: 1113–1120.

    PubMed  CAS  Google Scholar 

  21. Halbwachs-Mecarelli, L., G. Bessou, P. Lesavre, S. Lopez, and V. Witko-Sarsat. 1995. Bimodal distribution of proteinase 3 (PR3) surface expression reflects a constitutive heterogeneity in the polymorphonuclear neutrophil pool. FEBS Letters 374: 29–33.

    Article  PubMed  CAS  Google Scholar 

  22. Witko-Sarsat, V., L. Halbwachs-Mecarelli, A. Schuster, P. Nusbaum, I. Ueki, S. Canteloup, G. Lenoir, B. Descamps-Latscha, and J.A. Nadel. 1999. Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. American Journal of Respiratory Cell and Molecular Biology 20: 729–736.

    PubMed  CAS  Google Scholar 

  23. Faurschou, M., and N. Borregard. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection 5: 1317–1327.

    Article  PubMed  CAS  Google Scholar 

  24. Choi, M., C. Eulenberg, S. Rolle, J.P. von Kries, F.C. Luft, and R. Kettritz. 2010. The use of small molecule high-throughput screening to identify inhibitors of the proteinase 3-NB1 interaction. Clinical and Experimental Immunology 161: 389–396.

    PubMed  CAS  Google Scholar 

  25. Goldmann, W.H., J.L. Niles, and M.A. Arnaout. 1999. Interaction of purified proteinase 3 (PR3) with reconstituted lipid bilayers. European Journal of Biochemistry 261: 155–162.

    Article  PubMed  CAS  Google Scholar 

  26. Campbell, E.J., and C.A. Owen. 2007. The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. The Journal of Biological Chemistry 282: 14645–14654.

    Article  PubMed  CAS  Google Scholar 

  27. Korkmaz, B., A. Kuhl, B. Bayat, S. Santoso, and D.E. Jenne. 2008. A hydrophobic patch on proteinase 3, the target of autoantibodies in Wegener granulomatosis, mediates membrane binding via NB1 receptors. The Journal of Biological Chemistry 283: 35976–35982.

    Article  PubMed  CAS  Google Scholar 

  28. Zani, M.L., K. Baranger, N. Guyot, S. Dallet-Choisy, and T. Moreau. 2009. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Science 18: 579–594.

    PubMed  CAS  Google Scholar 

  29. Gupta, V.K., and L.R. Gowda. 2008. Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Biochimie 90: 749–761.

    Article  PubMed  CAS  Google Scholar 

  30. Serhan, C.N., N. Chiang, and T.E. van Dyke. 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Reviews. Immunology 8: 349–361.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

This work was supported by the German Research Foundation (Transregio 67, project A-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Arnhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleddermann, J., Pichert, A. & Arnhold, J. Interaction of Serine Proteases from Polymorphonuclear Leucocytes with the Cell Surface and Heparin. Inflammation 35, 81–88 (2012). https://doi.org/10.1007/s10753-011-9292-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9292-x

KEY WORDS

Navigation