Skip to main content

Advertisement

Log in

Ecological determinants of community structure across the trophic levels of freshwater food webs: a test using bromeliad phytotelmata

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the relative importance of habitat and biotic drivers on community assembly across food web components is an important step towards predicting the consequences of environmental changes. Because documenting entire food webs is often impractical, this question has been only partially investigated. Here, we partitioned variation in species assemblages of the major components of tank bromeliad food webs (bacteria, algae, protozoans, detritivorous and predatory invertebrates) into habitat and biotic determinants and examined the influence of habitat variables and predator or prey abundance on all taxonomic assemblages. Ecological determinism of assemblage structure ranged from weak in bacteria (< 10% of the explained variance) to strong in predatory invertebrates (90%). Habitat features and canopy openness significantly influenced species assemblages; however, prey or predator density had far and away the most significant structuring effects. If biotic forces are at least as important as the abiotic forces while the importance of stochasticity declines towards upper trophic levels, then trophic levels could respond differently to natural or anthropogenic disturbance and to shifts in species distributions. The effects of such differential responses on food web reconfiguration, however, remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amundrud, S. L. & D. S. Srivastava, 2015. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology 96: 1957–1965.

    PubMed  Google Scholar 

  • Armbruster, P., R. A. Hutchinson & P. Cotgreave, 2002. Factors influencing community structure in a South American tank bromeliad fauna. Oikos 96: 225–234.

    Google Scholar 

  • Bongers, F., P. Charles-Dominique, P. M. Forget & M. Théry, 2001. Nouragues. Dynamics and Plant-Animal Interactions in a Neotropical Rainforest. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bourrelly, P., 1990. Les algues d’eau douce. Tome I. Les algues vertes. N. Boubée et Cie, Paris.

    Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2002. Environmental issues in lakes and ponds: current state and perspectives. Environmental Conservation 29: 290–306.

    Google Scholar 

  • Brouard, O., A. H. Le Jeune, C. Leroy, R. Céréghino, O. Roux, L. Pélozuelo, A. Dejean, B. Corbara & J.-F. Carrias, 2011. Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS ONE 6(5): e20129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouard, O., R. Céréghino, B. Corbara, C. Leroy, L. Pélozuelo, A. Dejean & J.-F. Carrias, 2012. Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57: 815–823.

    Google Scholar 

  • Carles, L., P. Besse-Hoggan, M. Joly, A. Vigouroux, S. Morera & I. Batisson, 2016. Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione. Biochemical Journal 473: 1443–1453.

    CAS  PubMed  Google Scholar 

  • Carrias, J. F., O. Brouard, C. Leroy, R. Céréghino, L. Pélozuelo, A. Dejean & B. Corbara, 2012. An ant-plant mutualism induces shifts in protist community structure of a tank-bromeliad. Basic and Applied Ecology 13: 698–705.

    Google Scholar 

  • Carrias, J. F., R. Céréghino, O. Brouard, L. Pélozuelo, A. Dejean, A. Couté, B. Corbara & C. Leroy, 2014. Two coexisting tank-bromeliads host distinct algal communities on a tropical inselberg. Plant Biology 16: 997–1004.

    PubMed  Google Scholar 

  • Chase, J. M. & M. A. Leibold, 2003. Ecological niches: Linking classical and contemporary approaches. University of Chicago Press, Chicago.

    Google Scholar 

  • Cowther, T. W., D. S. Maynard, T. R. Cowther, J. Peccia, J. R. Smith & M. A. Bradford, 2014. Untangling the fungal niche: the trait-based approach. Frontiers in Microbiology 5: 759.

    Google Scholar 

  • Dedieu, N., R. Vigouroux, P. Cerdan & R. Céréghino, 2015. Invertebrate communities delineate hydro-ecoregions and respond to anthropogenic disturbance in East-Amazonian streams. Hydrobiologia 742: 95–105.

    CAS  Google Scholar 

  • Dézerald, O., C. Leroy, B. Corbara, J.-F. Carrias, L. Pélozuelo, A. Dejean & R. Céréghino, 2013. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems. Plos ONE 8: e71735.

    PubMed  PubMed Central  Google Scholar 

  • Dézerald, O., S. Talaga, C. Leroy, J.-F. Carrias, B. Corbara, A. Dejean & R. Céréghino, 2014. Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723: 77–86.

    Google Scholar 

  • Dézerald, O., R. Céréghino, B. Corbara, A. Dejean & C. Leroy, 2015. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshwater Biology 60: 1917–1929.

    Google Scholar 

  • Farjalla, V. F., D. S. Srivastava, N. A. C. Marino, F. D. Azevedo, V. Dib, P. M. Lopes, A. S. Rosado, R. L. Bozelli & F. A. Esteves, 2012. Ecological determinism increases with organism size. Ecology 93: 1752–1759.

    PubMed  Google Scholar 

  • Farjalla, V. F., A. L. González, R. Céréghino, O. Dézerald, N. A. C. Marino, G. C. Piccoli, B. A. Richardson, M. J. Richardson, G. Q. Romero & D. S. Srivastava, 2016. Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads. Ecology 97: 2147–2156.

    PubMed  Google Scholar 

  • Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.

    Google Scholar 

  • Frank, J. H. & L. P. Lounibos, 2009. Insect and allies associated with bromeliads: a review. Terrestrial Arthropod Reviews 1: 125–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frazer, G. W., C. D. Canham & K. P. Lertzman, 1999. Gap Light Analyzer (GLA) 20: Imaging Software to Extract Canopy Structure and Gap Light Transmission Indices from True-Colour Fisheye Photographs: Users Manual and Program Documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystems Studies, Millbrook.

    Google Scholar 

  • Freilich, M. A., E. Wieters, B. R. Broitman, P. A. Marquet & S. A. Navarrete, 2018. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99: 690–699.

    PubMed  Google Scholar 

  • Gravel, D., B. Baiser, J. A. Dunne, J. Kopelke, N. D. Martinez, T. Nyman, T. Poisot, D. B. Stouffer, J. M. Tylianakis, S. A. Wood & T. Roslin, 2019. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42: 401–415.

    Google Scholar 

  • Gauzens, B., S. Legendre, X. Lazzaro & G. Lacroix, 2015. Intermediate predation pressure leads to maximal complexity in food webs. Oikos 125: 595–603.

    Google Scholar 

  • Hammill, E. D. D., T. B. Atwood, P. Corvalan & D. S. Srivastava, 2015. Behavioural responses to predation may explain shifts in community structure. Freshwater Biology 60: 125–135.

    Google Scholar 

  • Heino, J., 2002. Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation 11: 137–147.

    Google Scholar 

  • Holt, R. D. & M. Barfield, 2009. Trophic interactions and range limits: the diverse roles of predation. Proceedings of the Royal Society London B 276: 1435–1442.

    Google Scholar 

  • Jabiol, J., B. Corbara, A. Dejean & R. Céréghino, 2009. Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management 257: 351–360.

    Google Scholar 

  • Jocqué, M., A. Kernahan, A. Nobes, C. Willians & R. Field, 2010. How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649: 293–300.

    Google Scholar 

  • Komarek, J. & K. Anagnostidis, 1999. Cyanoprokaryota: 1: Chroococcales. In Ettl, H., G. Gäartner, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Vol. 19. Springer, Heidelberg: 548.

    Google Scholar 

  • Komarek, J. & K. Anagnostidis, 2005. Süsswasserflora von Mitteleuropa 19/2. Cyanoprokaryota. Teil: Oscillatoriales. Elsevier, München.

    Google Scholar 

  • Kratina, P., J. S. Petermann, N. A. C. Marino, A. A. M. D. MacDonald & D. S. Srivastava, 2017. Environmental control of the microfaunal community structure in tropical bromeliads. Ecology and Evolution 7: 1627–1634.

    PubMed  PubMed Central  Google Scholar 

  • Kraus, C. N., M. P. Bonnet, C. A. Miranda, I. deSouzaNogueira & J. Garnier, 2019. Interannual hydrological variations and ecological phytoplankton patterns in Amazonian floodplain lakes. Hydrobiologia 830: 135–149.

    CAS  Google Scholar 

  • Leibold, M. A., J. M. Chase & S. K. Morgan Ernest, 2016. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98: 909–919.

    Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Le Roux, P. C. & M. A. McGeoch, 2008. Rapid range expansion and community reorganization in response to warming. Global Change Biology 14: 2950–2962.

    Google Scholar 

  • Leroy, C., B. Corbara, A. Dejean & R. Céréghino, 2009. Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytologist 183: 1124–1133.

    PubMed  Google Scholar 

  • Mayer, T. D. & S. L. Pilson, 2019. Interactions of water levels with water quality, endemic waterbirds, and invasive species in a shallow, tropical pond. Hydrobiologia 829: 77–93.

    CAS  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque, Iowa.

    Google Scholar 

  • Orrock, J. L. & J. I. Watling, 2010. Local community size mediates ecological drift and competition in metacommunities. Proceedings of the Royal Society B 277: 2185–2191.

    PubMed  Google Scholar 

  • Paszkowski, C. A. & W. M. Tonn, 2000. Community concordance between the fish and aquatic birds of lakes in northern Alberta: the relative importance of environmental and biotic factors. Freshwater Biology 43: 421–437.

    Google Scholar 

  • Petermann, J. S., V. F. Farjalla, M. Jocque, P. Kratina, A. A. M. MacDonald, N. A. C. Marino, P. M. de Omena, G. C. O. Piccoli, B. A. Richardson, M. J. Richardson, G. Q. Romero, M. Videla & D. S. Srivastava, 2015. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96: 428–439.

    PubMed  Google Scholar 

  • Rangel, J. V., R. E. S. Araujo, C. G. Casotti, L. C. Costa, W. P. Kiffer Jr. & M. S. Moretti, 2017. Assessing the role of canopy cover on the colonization of phytotelmata by aquatic invertebrates: an experiment with the tank-bromeliad Aechmea lingulata. Journal of Limnology 76: 230–239.

    Google Scholar 

  • Ricci, C. & G. Melone, 2000. Key to the identification of the genera of Bdelloid Rotifers. Hydrobiologia 418: 73–80.

    Google Scholar 

  • Romanuk, T. N., A. Hayward & J. A. Hutchings, 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography 20: 231–240.

    Google Scholar 

  • Srivastava, D., 2006. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad–insect community. Oecologia 149: 493–504.

    PubMed  Google Scholar 

  • Srivastava, D. S. & T. Bell, 2009. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecology Letters 12: 1016–1028.

    PubMed  Google Scholar 

  • Toporowska, M., J. Rechulicz, M. Adamczuk & M. Niedzwiecki, 2018. The role of abiotic and biotic environmental factors in shaping epiphyton on common reed in shallow, hydrologically transformed, temperate lakes. Knowledge and Management of Aquatic Ecosystems 418: 18.

    Google Scholar 

  • Trzcinski, M. K., D. S. Srivastava, B. Corbara, O. Dézerald, C. Leroy, J.-F. Carrias, A. Dejean & R. Céréghino, 2016. The effects of food web structure on ecosystem function exceeds those of precipitation. Journal of Animal Ecology 85: 1147–1160.

    PubMed  Google Scholar 

  • Voigt, W., J. Perner, A. J. Davis, T. Eggers, J. Schumacher, R. Bährmann, F. Bärbel, W. Heinrich, G. Köhler, D. Lichter, R. Marstaller & F. W. Sander, 2003. Trophic levels are differentially sensitive to climate. Ecology 84: 2444–2453.

    Google Scholar 

  • Willmer, P., G. Stone & I. Johnston, 2000. Environmental Physiology of Animals. Blackwell Science, Hoboken.

    Google Scholar 

  • Zollner, E., B. Santer, M. Boersma, H. G. Hoppe & K. Jurgens, 2003. Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biology 48: 2174–2193.

    Google Scholar 

  • Zotz, G. & V. Thomas, 1999. How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany 83: 183–192.

    Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Fondation pour la Recherche sur la Biodiversité (FRB Project MICBROME, AAP-IN-2009-038) and the French Agence Nationale de la Recherche through an Investissement d’Avenir grant (Labex CEBA, ANR-10-LABX-25-01). Logistic support was provided by the Nouragues Field Station of the Centre National de la Recherche Scientifique (CNRS). Two anonymous reviewers provided valuable comments on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régis Céréghino.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Céréghino, R., Corbara, B., Leroy, C. et al. Ecological determinants of community structure across the trophic levels of freshwater food webs: a test using bromeliad phytotelmata. Hydrobiologia 847, 391–402 (2020). https://doi.org/10.1007/s10750-019-04100-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04100-4

Keywords

Navigation