Skip to main content

Advertisement

Log in

The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal flooding changes chemical and morphometric characteristics of the tropical floodplain lakes, affecting stratification which can influence mercury dynamics. We investigate the influence of flooding on the mercury dynamics in an Amazon floodplain lake. Three points on the lake, the Solimões River, and the connecting channel to the river were sampled along the annual flood pulse. During high-water, the lake was deep (12.7 m, on average) and the area farthest from the river was stratified with low oxygen and high methylmercury concentrations ([MeHg]) at depths below 7 m (0.37 ng l−1, on average). The two sites closest to the river were destratified and the [MeHg] was lower (0.077 ng l−1, on average along all depths). At low-water, the lake was shallower (3 m, on average) and destratified, with higher oxygen concentrations, and no difference in [MeHg] along the water column at all lake sites. Independent of season, the [MeHg] in the connecting channel was higher than those in the river. The [MeHg] in phytoplankton varied in response to changes in biomass, showing a biodilution effect. Variations in lake morphometry controlled the stratification and [MeHg] in the lake during the high-water. Floodplain lakes export hypolimnetic MeHg to their associated rivers during high-water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, R., 2012. Estudo da origem, mobilização e organificação do mercúrio no reservatório da UHE de Samuel, RO. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

  • Almeida, R., J. V. E. Bernardi, R. C. Oliveira, D. P. Carvalho, A. G. Manzatto, L. D. Lacerda & W. R. Bastos, 2014. Flood pulse and spatial dynamics of mercury in sediments in Puruzinho lake, Brazilian Amazon. Acta Amazonica 44: 99–106.

    Article  Google Scholar 

  • Balogh, S. J., E. B, Swain & Y. H. Nollet, 2008. Characteristics of mercury speciation in Minnesota rivers and streams. Environmental Pollution 154: 3–11.

  • Barbosa, A. C., J. de Souza, J. G. Dórea, W. F. Jardim & P. S. Fadini, 2003. Mercury Biomagnification in a Tropical Black Water, Rio Negro, Brazil. Archives of Environmental Contamination and Toxicology 45(2): 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Belger, L. & B. R. Forsberg, 2006. Factors controlling Hg levels in two predatory fish species in the Negro river basin, Brazilian Amazon. Science of Total Environmental 367: 451–459.

    Article  CAS  Google Scholar 

  • Beltran, P. S., J. Zuanon, R. G. Leite, J. R. P. Peleja, A. B. Mendonça & B. R. Forsberg, 2011. Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake. Neotropical Ichthyology 9: 901–908.

    Article  Google Scholar 

  • Bisinoti, M. C., W. F. Jardim & E. J. Sargentini, 2007. Seasonal behavior of mercury species in waters and sediments from the Negro River Basin. Journal of the Brazilian Chemical Society 18: 544–553.

    Article  CAS  Google Scholar 

  • Bonnet, M. P., G. Barroux, J. M. Martinez, F. Seyler, P. Moreira-Turcq, G. Cochonneau, J. Melack, G. Boaventura, L. Maurice-Bourgoin, J. G. Leon, E. Roux, S. Calmant, P. Kosuth, J. L. Guyot & P. Seyler, 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18–30.

    Article  Google Scholar 

  • Brigham, M. E., D. A. Wentz, G. R. Aiken & D. P. Krabbenhoft, 2009. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science & Technology 43: 2720–2725.

    Article  CAS  Google Scholar 

  • Chen, C. Y. & C. L. Folt, 2005. High plankton densities reduce mercury biomagnification. Environmental Science & Technology 39: 115–121.

    Article  CAS  Google Scholar 

  • Correia, R. R. S., M. R. Miranda & J. R. D. Guimarães, 2012. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors. Environmental Research 112: 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Eckley, C. S. & H. Hintelmann, 2005. Determination of mercury methylation potentials in the water column of lakes across Canada. Science of the Total Environment 368: 111–125.

    Article  PubMed  Google Scholar 

  • EPA Method 1669, 1996. Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. United States Environmental Protection Agency, Washington, DC.

  • EPA Method 1630, 2001. Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS. United States Environmental Protection Agency, Washington, DC.

  • EPA Method 1631, 2002. Revision E: Mercury in Water by oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. United States Environmental Protection Agency, Washington, DC.

  • Fadini, P. S. & W. F. Jardim, 2000. Storage of natural water samples for total and reactive mercury analysis in PET bottles. Analyst 125: 549–551.

    Article  CAS  Google Scholar 

  • Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank & D. Alsdorf, 2007. The shuttle radar topography mission. Review of Geophysics 45: 1–33.

    Article  Google Scholar 

  • Fisher, N. S. & S. E. Hook, 2002. Toxicology tests with aquatic animals need to consider the trophic transfer of metals. Toxicology 181: 531–536.

    Article  PubMed  Google Scholar 

  • Fisher, T. R. & P. E. Parsley, 1979. Amazon lakes: water storage and nutrient stripping by algae. Limnology and Oceanography 24: 547–553.

    Article  CAS  Google Scholar 

  • Forsberg, B. R., C. A. R. M. Araujo-Lima, L. A. Martinelli, R. L. Victoria & J. A. Bonassi, 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.

    Article  Google Scholar 

  • Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelli & H. Santos, 1988. Factors controlling nutrient levels in Amazon floodplain lakes. Limnology and Oceanography 33: 41–56.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey & D. A. Elias, 2013. Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology 47: 11810–11820.

    Article  CAS  Google Scholar 

  • Guimarães, J. R. D., M. Markus, M. L. D. Hylander, E. C. Silva, M. Roulet, J. B. N. Mauro & R. A. Lemos, 2000. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Science of the Total Environment 261: 99–107.

    Article  PubMed  Google Scholar 

  • Hess, L. L., J. M. Melack, E. M. L. M. Novo, C. C. F. Barbosa & M. Gastil, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.

    Article  Google Scholar 

  • Hess, L. L., J. M. Melack, A. G. Affonso, C. Barbosa, M. Gastil-Buhl & E. M. L. M. Novo, 2015. Wetlands of the Lowland Amazon Basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35: 745–756.

    Article  Google Scholar 

  • Junk, J., J. Bayley & P. B. Sparks, 1989. The flood pulse concept in river – Floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium (LARS). Special Publication of Fisheries and Aquatic Sciences, Ottawa, Canadá 1989: 110–127.

  • Kasper, D., 2014. Dinâmica sazonal do metilmercúrio em ecossistemas fluviais amazônicos. Ph. D. Thesis, INPA, Manaus, AM.

  • Kasper, D., B. R. Forsberg, J. H. F. Amaral, R. P. Leitão, S. P. Py-Daniel, W. R. Bastos & O. Malm, 2014. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from balbina hydroelectric dam, Amazonas, Brazil. Environmental Science & Technology 48: 1032–1040.

    Article  CAS  Google Scholar 

  • Kasper, D., B. R. Forsberg, R. Almeida, W. R. Bastos & O. Malm, 2015. Methodologies for sampling, preservation and storage of water samples for mercury analysis – A review. Química Nova 38: 410–418.

    CAS  Google Scholar 

  • Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates & R. P. Mason, 2006. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology 72: 7919–7921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia, P. D., L. Maurice, E. Tessier, D. Amouroux, D. Cossa, M. Perez, P. Moreira-Turcq & I. Rheault, 2009. Mercury distribution and exchanges between the Amazon River and connected floodplain lakes. Science of the Total Environment 407: 6073–6084.

    Article  CAS  PubMed  Google Scholar 

  • Melack, J. M., 1984. Amazon floodplain lakes: shape, fetch, and stratification. Verhand ungen des International en Verein Limnologie 22: 1278–1282.

  • Melack, J. M. & T. R. Fisher, 1990. Comparative limnology of tropical floodplain lakes with an emphasis on the Central Amazon. Acta Limnologica Brasiliensia 3: 1–48.

    Google Scholar 

  • Miller, J. N. & J. N. Miller (eds), 1994. Statistics for Analytical Chemistry, 4th, ed. Ellis Horwood, Great Britain: 296.

  • Miranda, E. C. A., 2013. Influência do pulso de inundação do rio Solimões sobre os processos geoquímicos e comunidade fitoplanctônica do lago Janauacá, Amazonas, Brasil. Ph. D. Thesis, UnB, Brasília, DF.

  • Moreira-Turcq, P., M. -P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez & P. Seyler, 2013. Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Global Biogeochemical Cycles 27: 1–12.

    Article  Google Scholar 

  • Mortillaro, J. M., G. Abril, P. Moreira-Turc, R. Sobrinho, M. Perez & T. Meziane, 2011. Fatty acid and stable isotope (d13C, d15N) signatures of particulate organic matter in the Lower Amazon River: seasonal contrasts and connectivity between floodplain lakes and the mainstem. Organic Geochemistry 42: 1159–1168.

    Article  CAS  Google Scholar 

  • Muresan, B., D. Cossa, S. Richard & Y. Dominique, 2008. Monomethylmercurysources in a tropical artificial reservoir. Applied Geochemistry 23: 1101–1126.

    Article  CAS  Google Scholar 

  • Nascimento, E. L., J. P. O. Gomes, R. Almeida, W. R. Bastos, J. V. E. Bernardi & R. K. Miyai, 2007. Mercúrio no plâncton de um lago natural amazônico, Lago Puruzinho (Brasil). Journal of the Brazilian Society of Ecotoxicology 2: 67–72.

    Article  Google Scholar 

  • Novo, E. M. L. M., C. C. F. Barbosa, R. M. Freitas, J. Melack, Y. E. Shimabukuru & W. P. Filho, 2005. Distribuição sazonal de fitoplâncton no Lago Grande de Curuai em resposta ao pulso de inundação do Rio Amazonas a partir da análise de imagens MODIS. Anais XII Simpósio Brasileiro de Sensoriamento Remoto: 3175–3182.

  • Pickhardt, P. C., C. L. Folt, C. Y. Chen, B. Klaue & J. D. Blum, 2005. Impacts of zooplankton composition and algal enrichment on theaccumulation of mercury in an experimental freshwater food web. Science of the Total Environment 339: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Razavi, N. R., M. Qu, D. Chen, Y. Zhong, W. Ren, Y. Wang & L. M. Campbell, 2015. Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg depositation ecoregion. Limnology and Oceanography 60: 386–401.

    Article  CAS  Google Scholar 

  • Richey, J. E., J. I. Hedges, A. H. Devol & P. D. Quay, 1990. Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography 35: 352–371.

    Article  CAS  Google Scholar 

  • Roach, K. A., F. N. Jacobsen, V. C. Fiorello, A. Stronza & K. O. Winemiller, 2013. Gold Mining and mercury bioaccumulation in a floodplain lake and main channel of the Tambopata River, Perú. Journal of Environmental Protection 4: 51–60.

    Article  Google Scholar 

  • Roulet, M., J. R. D. Guimarães & M. Loucotte, 2001. Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain – Effect of seasonal inundation. Water, Air, Soil Pollution 128: 41–60.

    Article  CAS  Google Scholar 

  • Roulet, M., M. Lucotte, A. S. Aubin, S. Tran, I. Rhéault, N. Farella, E. J. Silva, J. Dezencourt, C. J. Passos, G. S. Soares, J. R. D. Guimarães & D. M. Amorim, 1998. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Science of the Total Environment 223: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Roulet, M., M. Lucotte, N. Farella, G. Serique, H. Coelho, P. C. J. Sousa, S. E. Jesus, P. S. Andrade, D. Mergler, J. R. D. Guimarães & M. Amorim, 1999. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air, Soil Pollution 112: 297–313.

    Article  CAS  Google Scholar 

  • Sampaio, S. D., M. Lucotte, S. Paquet & R. Davidson, 2009. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon. Environmental Research 109: 432–446.

    Article  Google Scholar 

  • Schmidt, G. W., 1973. Primary production of phytoplankton in the three types of Amazonian waters. III Primary productivity of phytoplankton in a tropical flood-plain lake of Central Amazonia, Lago do Castanho, Amazonas, Brasil. Amazoniana 4: 379–404.

    Google Scholar 

  • Silva-Forsberg, M. C., B. R. Forsberg & V. K. Zeideman. 1999. Mercury contamination in humans linked to river chemistry in the Amazon basin. Ambio 28: 519–521.

    Google Scholar 

  • Stallard, R. F. & J. M. Edmond, 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research 88: 9671–9688.

    Article  CAS  Google Scholar 

  • Trevisan, G. V. & B. R. Forsberg, 2007. Relationship among nitrogen and total phosphorus, algal biomass and zooplankton density in the central amazonia lakes. Hydrobiologia 568: 357–365.

    Article  Google Scholar 

  • Tsui, M. T. K. & W. X. Wang, 2004. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environmental Science & Technology 38: 808–816.

    Article  CAS  Google Scholar 

  • UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland: 32.

  • Watras, C. J., N. S. Bloom, S. A. Claas, K. A. Morrison, C. C. Gilmour & S. R. Craig, 1995. Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake. Water, Air, Soil Pollution 80: 735–745.

    Article  CAS  Google Scholar 

  • Zúñiga, U. F. R., 2006. Avaliação da influência de fatores ambientais na estrutura, dinâmica e propriedades ópticas das substâncias húmicas aquáticas do rio negro. Thesis, Universidade de São Paulo, São Carlos, SP.

Download references

Acknowledgments

The authors acknowledge the financial support of CNPq, CAPES, and FAPEAM and the logistics of INPA. We also thank J. Rocha and L. Pinheiro for their support in the field work, the Laboratório de Biogeoquímica Ambiental (UNIR) for the help with mercury analyses, and Laboratório de Química Ambiental (INPA) for the help with DOC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendson C. Brito.

Additional information

Handling editor: John M. Melack

Electronic supplementary material

Below is the link to the electronic supplementary material. Wetland habitats present in Janauacá Lake during high-water and low-water seasons, seasonal variation in the biomass of phytoplankton and zooplankton in Janauacá, seasonal variation in the water level of the Solimões River, and partial correlations between MeHg concentrations and limnological variables are detailed in supplementary material (Online Appendices A, B, C, D, and E).

Appendix A

Supplementary material 1 (DOC 34 kb)

Appendix B

Supplementary material 2 (DOC 820 kb)

Appendix C

Supplementary material 3 (DOC 1216 kb)

Appendix D

Supplementary material 4 (DOC 368 kb)

Appendix E

Supplementary material 5 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, B.C., Forsberg, B.R., Kasper, D. et al. The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake. Hydrobiologia 790, 35–48 (2017). https://doi.org/10.1007/s10750-016-3017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3017-y

Keywords

Navigation