Skip to main content

Advertisement

Log in

Sources of uncertainty in assessment of marine phytoplankton communities

  • WATER BODIES IN EUROPE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Characterisation of phytoplankton communities is important for classification of the ecological status of marine waters. In order to design a monitoring programme, it is important to know what degree of variation in the measurements occur at each level (water body, station and sample), so that resources can be spent in a way that maximise the precision of the measured parameters. Seven European water bodies were sampled to assess the variation in pigment concentrations and population densities attributed to water body, station and sample levels. It was found that the main proportion of the variation between pigment measurements was explained by the variation between stations (12–91% of variation) followed by the variation between water bodies (0–89% of variation). For measurements of population density, the main proportion of the variation between densities of cells recorded was explained by the variation between the taxonomists counting the samples (61%), whilst the main proportion of the variation between numbers of taxa recorded was explained by the variation between water bodies (83%). When the cell density of the nine dominant classes were analysed separately, the main proportion of variation was explained at the water body level for all but two class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agusti, S. & C. M. Durate, 1999. Phytoplankton chlorophyll a distribution and water column stability in the central Atlantic Ocean. Oceanologica Acta 22: 193–203.

    Article  CAS  Google Scholar 

  • Borja, A., M. Elliott, P. Hernriksen & N. Marba, 2012. Transitional and coastal waters ecological status assessment: advances and challenges resulting from implementing the European Water Framework Directive. Hydrobiologia. doi:10.1007/s10750-012-1276-9.

  • Carletti, A. & A.-S. Heiskanen (eds), 2009. Water Framework Directive intercalibration technical report. Part 3: Coastal and Transitional waters. European Commission, Joint Research Centre, Institute for Environment and Sustainability, JRC Scientific and Technical Reports.

  • Clarke, R. T., 2012. Estimating confidence of European WFD ecological status class and WISER bioassessment uncertainty guidance software (WISERBUGS). Hydrobiologia. doi:10.1007/s10750-012-1245-3.

  • Clarke, R. T. & D. Hering, 2006. Errors and uncertainty in bioassessment methods – major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566: 433–439.

    Article  Google Scholar 

  • Daugbjerg, N. & P. Henriksen, 2001. Pigment composition and rbcL sequence data from the silicoflagellate Dictyocha speculum: a heterokont alga with pigments similar to some haptophytes. Journal of Phycology 37: 1110–1120.

    Article  CAS  Google Scholar 

  • European Commission, 2000. Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, 22.12.2000, L 327/1.

  • Haase, P., S. U. Pauls, K. Schindehütte & A. Sundermann, 2010. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. Journal of the North American Benthological Society 29: 1279–1291.

    Article  Google Scholar 

  • Hansen, G., N. Daugbjerg & P. Henriksen, 2000. Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, Comb. Nov. (=Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. Journal of Phycology 36: 394–410.

    Article  Google Scholar 

  • Henriksen, P., 2009. Reference conditions for phytoplankton at Danish Water Framework Directive intercalibration sites. Hydrobiologia 629: 255–262.

    Article  CAS  Google Scholar 

  • Hering, D., A. Borja, L. Carvalho and C. K. Feld (2012) Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, this issue.

  • Joint, I. & S. B. Groom, 2000. Estimation of phytoplankton production from space: current status and future potential of satellite remote sensing. Journal of Experimental Marine Biology and Ecology 250: 233–255.

    Article  PubMed  Google Scholar 

  • Kahlert, M., M. Kelly, R.-L. Albert, S. F. P. Almeida, T. Bešta, Saúl Blanco M. Coste, L. Denys, Luc Ector, M. Fránková, D. Hlúbiková, P. Ivanov, B. Kennedy, P. Marvan, A. Mertens, J. Miettinen, J. Picinska-Fałtynowicz, J. Rosebery, E. Tornés, S. Vilbaste and A. Vogel, 2012. Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessment. Hydrobiologia 695: 109–124.

  • Krause-Jensen, D., S. Sagert, H. Schubert & C. Boström, 2008. Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecological Indicators 8: 515–529.

    Article  Google Scholar 

  • Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49: 2179–2189.

    Article  Google Scholar 

  • Leakey, R. J. G., P. H. Burkill & M. A. Sleigh, 1994. A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. Journal of Plankton Research 16: 375–389.

    Article  Google Scholar 

  • Marques, J. C., S. N. Nielsen, M. A. Pardal & S. E. Jørgensen, 2003. Impact of eutrophication and river management within a framework of ecosystem theories. Ecological Modelling 166: 147–168.

    Article  Google Scholar 

  • Martins, I., M. A. Pardal, A. I. Lillebø, M. R. Flindt & J. C. Marques, 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgae blooms in a eutrophic estuary: a case study. Estuarine, Coastal and Shelf Science 52: 165–177.

    Article  CAS  Google Scholar 

  • Mender-Deuer, S., E. Lessard & J. Satterberg, 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Marine Ecology Progress Series 222: 41–50.

    Article  Google Scholar 

  • Meyer-Harms, B. & F. Pollehne, 1998. Alloxanthin in Dinophysis norvegica (Dinophysiales, Dinophyceae) from the Baltic Sea. Journal of Phycology 34: 280–285.

    Article  CAS  Google Scholar 

  • Moncheva, S., 2010. Guidelines for Quality Control of biological data-phytoplankton. UP-Grade BS Scene/Black Sea Commission.

  • Moncheva S. & B. Parr, 2005, updated 2010. Manual for phytoplankton sampling and analysis in the Black Sea. Black Sea Commission.

  • Moncheva, S., V. Doncheva, G. Shtereva, L. Kamburska & S. Gorinstein, 2002. Application of eutrophication indices for assessment of the Bulgarian Black Sea coastal ecosystem ecological quality. Water Science and Technology 46(8): 19–28.

    PubMed  CAS  Google Scholar 

  • Muurinen, J., J.-P. Pääkkönen, M. Räsänen & S. Sopanen, 2010. The state of the sea area outside Helsinki and Espoo in 2009. Mandatory monitoring of sewage waters. Publications by City of Helsinki Environment Centre No. 4/2010 (In Finnish).

  • Paasche, E. & I. Østergren, 1980. The annual cycle of plankton diatom growth and silica production in the inner Oslofjord. Limnology and Oceanography 25: 481–494.

    Article  CAS  Google Scholar 

  • Paerl, H. W., L. M. Valdes, J. L. Pinckney, M. F. Piehler, J. Dyble & P. H. Moisander, 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience 53: 953–964.

    Article  Google Scholar 

  • Peperzak, L., 2010. An objective procedure to remove observer-bias from phytoplankton time-series. Journal of Sea Research 63: 152–156.

    Article  Google Scholar 

  • Revilla, M., J. Franco, J. Bald, Á. Borja, A. Laza, S. Seoane & V. Valencia, 2009. The assessment of the phytoplankton ecological status in the Basque coast (northern Spain) according to the European Water Framework Directive. Journal of Sea Research 61: 60–67.

    Article  Google Scholar 

  • Roselli, L., A. Fabbrocini, C. Manzo & R. D’Adamo, 2009. Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy) Estuarine. Coastal and Shelf Science 84: 539–552.

    Article  CAS  Google Scholar 

  • SAS Institute Inc., 2009. SAS/STAT® 9.2 User’s Guide, 2nd ed. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Singer, J. D., 1998. Using SAS PROC MIXED to fit multilevel models, hirachical models, and individual growth models. Journal of Educational and Behavioral Statistics 24: 323–355.

    Google Scholar 

  • Trayanova, A., K. Stefanova, T. Trayanov & U. Niermann, 2002. Zooplankton and macrozoobenthic communities of the Varna-Beloslav lakes system 1906–2001. Proceeding of the “Second International Conference on Oceanography of the Eastern Mediterranean and Black Sea: Similarities and Differences of Two Interconnected Basins”, Ankara, Turkey, 14–18 October 2002: 799–804.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vignes, F., E. Barbone, P. Breber, R. D’Adamo, L. Roselli, N. Ungaro, S. Focardi, M. Renzi & A. Basset, 2009. Spatial and temporal description of the dystrophic crisis in Lesina lagoon during summer 2008. Transitional Water Bulletin 3: 114–119.

    Google Scholar 

  • Vuorio, K., L. Lepistö & A.-L. Holopainen, 2007. Intercalibrations of freshwater phytoplankton analysis. Boreal Environment Research 12: 561–569.

    Google Scholar 

  • Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjørnland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183–196.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project received financial support from the EU project ‘WISER’ contract # 226273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Mikael Dromph.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dromph, K.M., Agusti, S., Basset, A. et al. Sources of uncertainty in assessment of marine phytoplankton communities. Hydrobiologia 704, 253–264 (2013). https://doi.org/10.1007/s10750-012-1353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1353-0

Keywords

Navigation