Skip to main content
Log in

Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Glucagon-like peptide 1 (GLP-1) is a multifunctional hormone in glucose metabolism and intestinal function released by enteroendocrine L-cells. The plasma concentration of GLP-1 is increased by indigestible carbohydrates and luminal infusion of short-chain fatty acids (SCFAs). However, the triggers and modulators of the GLP-1 release remain unclear. We hypothesized that SCFAs produced by bacterial fermentation are involved in enteroendocrine cell proliferation and hormone release through free fatty acid receptor 2 (FFA2, also known as FFAR2 or GPR43) in the large intestine. Fructo-oligosaccharide (Fructo-OS), fermentable indigestible carbohydrate, was used as a source of SCFAs. Rats were fed an indigestible-carbohydrate-free diet (control) or a 5% Fructo-OS-containing diet for 28 days. FFA2-, GLP-1-, and 5-hydroxytryptamine (5-HT)-positive enteroendocrine cells were quantified immunohistochemically in the colon, cecum, and terminal ileum. The same analysis was performed in surgical specimens from human lower intestine. The coexpression of FFA2 with GLP-1 was investigated both in rats and humans. Fructo-OS supplementation in rats increased the densities of FFA2-positive enteroendocrine cells in rat proximal colon, by over two-fold, relative to control, in parallel with GLP-1-containing L-cells. The segmental distributions of these cells in human were similar to rats fed the control diet. The FFA2-positive enteroendocrine cells were GLP-1-containing L-cells, but not 5-HT-containing EC cells, in both human and rat colon and terminal ileum. Fermentable indigestible carbohydrate increases the number of FFA2-positive L-cells in the proximal colon. FFA2 activation by SCFAs might be an important trigger for produce and release GLP-1 by enteroendocrine L-cells in the lower intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amato A, Cinci L, Rotondo A, Serio R, Faussone Pellegrini MS, Vannucchi MG, Mule F (2010) Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol Motil 22:e203–e664

    Article  Google Scholar 

  • Bottcher G, Alumets J, Hakanson R, Sundler F (1986) Co-existence of glicentin and peptide YY in colorectal L-cells in cat and man. An electron microscopic study. Regul Pept 13:283–291

    Article  PubMed  CAS  Google Scholar 

  • Breuer RI, Buto SK, Christ ML, Bean J, Vernia P, Paoluzi P, Di Paolo MC, Caprilli R (1991) Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Dig Dis Sci 36:185–187

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  PubMed  CAS  Google Scholar 

  • Campbell JM, Fahey GC Jr, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    PubMed  CAS  Google Scholar 

  • Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92:521–526

    Article  PubMed  CAS  Google Scholar 

  • Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490

    Article  PubMed  CAS  Google Scholar 

  • Cani PD, Hoste S, Guiot Y, Delzenne NM (2007) Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 98:32–37

    Article  PubMed  CAS  Google Scholar 

  • Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    Article  PubMed  CAS  Google Scholar 

  • Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ (1996) Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 271:E458–E464

    PubMed  CAS  Google Scholar 

  • Dumoulin V, Moro F, Barcelo A, Dakka T, Cuber JC (1998) Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 139:3780–3786

    Article  PubMed  CAS  Google Scholar 

  • Eissele R, Goke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Goke B (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 22:283–291

    Article  PubMed  CAS  Google Scholar 

  • Freeland KR, Wolever TM (2010) Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr 103:460–466

    Article  PubMed  CAS  Google Scholar 

  • Gee JM, Johnson IT (2005) Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans. Nutrition 21:1036–1043

    Article  PubMed  CAS  Google Scholar 

  • Giralt M, Vergara P (1998) Sympathetic pathways mediate GLP-1 actions in the gastrointestinal tract of the rat. Regul Pept 74:19–25

    Article  PubMed  CAS  Google Scholar 

  • Hansen L, Deacon CF, Orskov C, Holst JJ (1999) Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140:5356–5363

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–E206

    Article  PubMed  CAS  Google Scholar 

  • Hubel KA, Russ L (1933) Mechanisms of the secretory response to luminal propionate in rat descending colon in vitro. J Auton Nerv Syst 43:219–229

    Article  Google Scholar 

  • Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva Penacarrillo ML, Ulusoy NB (1997) Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 273:G920–G927

    PubMed  CAS  Google Scholar 

  • Kaji I, Karaki S-I, Tanaka R, Kuwahara A (2010) Fructo-oligosaccharide (FOS) supplementation increases enteroendocrine L cells containing GLP-1 and SCFA receptor GPR43 (FFA2) in the large intestine. Gastroenterology 138:S-405

    Article  Google Scholar 

  • Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324:353–360

    Article  PubMed  CAS  Google Scholar 

  • Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 39:135–142

    Article  PubMed  CAS  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  CAS  Google Scholar 

  • Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al Hassi HO, Rayment N, Kamm MA, Knight SC, Forbes A (2006) Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55:348–355

    Article  PubMed  CAS  Google Scholar 

  • Mitsui R, Ono S, Karaki S, Kuwahara A (2005a) Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol Motil 17:585–594

    Article  PubMed  CAS  Google Scholar 

  • Mitsui R, Ono S, Karaki S, Kuwahara A (2005b) Propionate modulates spontaneous contractions via enteric nerves and prostaglandin release in the rat distal colon. Jpn J Physiol 55:331–338

    Article  PubMed  CAS  Google Scholar 

  • Mitsui R, Karaki SI, Kubo Y, Sugiura Y, Kuwahara A (2006) Fibre-free diet leads to impairment of neuronally mediated muscle contractile response in rat distal colon. Neurogastroenterol Motil 18:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889

    PubMed  CAS  Google Scholar 

  • Naslund E, Bogefors J, Skogar S, Gryback P, Jacobsson H, Holst JJ, Hellstrom PM (1999) GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 277:R910–R916

    PubMed  CAS  Google Scholar 

  • Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Orskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013

    Article  PubMed  CAS  Google Scholar 

  • Savage DC (1986) Gastrointestinal microflora in mammalian nutrition. Annu Rev Nutr 6:155–178

    Article  PubMed  CAS  Google Scholar 

  • Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103:51–56

    PubMed  CAS  Google Scholar 

  • Sjolund K, Sanden G, Hakanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130

    PubMed  CAS  Google Scholar 

  • Stoddart LA, Smith NJ, Milligan G (2008) International union of pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60:405–417

    Article  PubMed  CAS  Google Scholar 

  • Ten Bruggencate SJ, Bovee Oudenhoven IM, Lettink Wissink ML, Van der Meer R (2005) Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr 135:837–842

    PubMed  CAS  Google Scholar 

  • Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713

    Article  PubMed  CAS  Google Scholar 

  • Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665–673

    Article  PubMed  CAS  Google Scholar 

  • Yajima T (1985) Contractile effect of short-chain fatty acids on the isolated colon of the rat. J Physiol 368:667–678

    PubMed  CAS  Google Scholar 

  • Yajima T (1988) Luminal propionate-induced secretory response in the rat distal colon in vitro. J Physiol 403:559–575

    PubMed  CAS  Google Scholar 

  • Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, Demchyshyn L, Asa SL, Drucker DJ (2000) Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 119:744–755

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John B Furness (University of Melbourne) for advices to the manuscript. Meiji Seika Kaisha, Ltd is thanked for obtaining Fructo-OS and analyzing its components. This work was supported in part by funding from the Japan Society for the Promotion of Science (no. 21590235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsukazu Kuwahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaji, I., Karaki, Si., Tanaka, R. et al. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Hist 42, 27–38 (2011). https://doi.org/10.1007/s10735-010-9304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9304-4

Keywords

Navigation