Skip to main content
Log in

Improving antioxidant activity in transgenic Codonopsis lanceolata plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Codonopsis lanceolata Trautv (Companulaceae) is a folk medicine in Korea. To shift the content of tocopherol and enhance its antioxidant properties, we overexpressed the γ-tocopherol methyltransferase (γ-tmt) gene in C. lanceolata. The antioxidant activity of methanolic crude extracts of the transgenic plants was compared to that of control plants using the 1,1-diphenyl-2-picrylhydrazyl radical scavenging method, with α-tocopherol and butylated hydroxy toluene as standard antioxidants. The antioxidant activity of the leaf and root extracts of transgenic plants was higher (IC 50 12–17.33 and 408–524 μg/ml, respectively) than that of control plant leaf and root extracts (18 and 529 μg/ml, respectively). High-performance liquid chromatography analysis of phenolic compounds confirmed an increase in the levels of 12 major phenolic acids and flavonoids in the leaf and root extracts of transgenic plants compared to control plants. We also found that the rate of photosynthesis was 48% higher in transgenic plants than in control plants. Based on these results, we suggest that increases in the α-tocopherol level in transgenic C. lanceolata plants may result in increases in the photosynthetic performance and antioxidant metabolism of these plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher RG, Ertruk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Structure activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biol Med 9:1355–1363

    Article  Google Scholar 

  • Cerutti PA (1991) Oxidant stress and carcinogenesis. Eur J Clin Invest 21:1–5

    Article  CAS  PubMed  Google Scholar 

  • Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells 19:16–22

    CAS  PubMed  Google Scholar 

  • Chung MS (1999) Composition and color of Codonopsis lanceolata affected by cultivation methods. Korean Diet Cult 14:529–534

    Google Scholar 

  • Cieslik E, Greda A, Adamus W (2006) Contents of polyphenols in fruit and vegetables. Food Chem 94:135–142

    Article  CAS  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Bargerger-Gateau P, Gatigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125:160–163

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  • Fukuzawa K, Tokumura A, Ouchi S, Tsukatani H (1982) Antioxidant activities of tocopherols on Fe2+ ascorbate-induced lipid peroxidation in lecithin liposomes. Lipids 17:511–513

    Article  CAS  PubMed  Google Scholar 

  • Ghimire BK, Seong ES, Lim JD, Heo K, Kim MJ, Chung IM, Juvik JK, Yu CY (2008) Agrobacterium mediated transformation of Codonopsis lanceolata using the γ-TMT gene. Plant Cell Tiss Organ Cult 95:265–274

    Article  CAS  Google Scholar 

  • Han EG, Sung IS, Moon HG, Cho SY (1998) Effects of Codonopsis lanceolata water extract on the level of lipid in rats fed high fat diet. J Korean Soc Food Sci Nutr 27:940–944

    Google Scholar 

  • Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M (2008) Rapid identification of triterpenoid saponins in the roots of Codonopsis lanceolata by liquid chromatography–mass spectrometry. J Nat Med 62:423–429

    Article  CAS  PubMed  Google Scholar 

  • Ivan Y, Tsonko T, Violeta V, Katya G, Peter I, Nikolai T, Tatyana P (2001) Changes in CO2 assimilation, transpiration and stomatal resistance of different wheat cultivars experiencing drought under field conditions. Bulg J Plant Physiol 27:20–33

    Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim KR, Kim JJ, Oh CH (1992) Comparative sampling procedures for the volatile flavor components of Codonopsis lanceolata. Korean J Food Sci Technol 24:171–176

    Google Scholar 

  • Kim SL, Chi HY, Kim JT, Lee YH, Park NK, Son JR, Kim SJ (2006) Isoflavone content and its relationship with other seed quality traits of Soybean cultivars collected in South Korea. Korean J Crop Sci 51:81–88

    Article  Google Scholar 

  • Lee JM, Kwon H, Jeong H, Lee JW, Lee SY, Baek SJ, Surh YJ (2001) Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother Res 15:245–249

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Jung HJ, Park HJ, Kim DG, Lee JY, Lee KT (2005) β-D xylopyranosyl-(1–3)-β-D-glucuronopyranosyl echinocystic acid isolated from the roots of Codonopsis lanceolata induces caspase-dependent apoptosis in human acute promyelocytic leukemia HL-60 cells. Biol Pharm Bull 28:854–859

    Article  CAS  PubMed  Google Scholar 

  • Lee YG, Kim JY, Lee JY, Byeon SE, Hong EK, Lee J, Rhee MH, Park JH, Cho JY (2007) Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses. J Ethnopharmacol 112:180–188

    Article  PubMed  Google Scholar 

  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AE, Rietjens IM (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biol Med 31:869–881

    Article  CAS  Google Scholar 

  • Lorenc-Kukula K, Amarowicz R, Oszmianski J, Doermann P, Starzycki M, Skaa J, Zuk M, Kulma A, Szopa J (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 53:3685–3692

    Article  CAS  PubMed  Google Scholar 

  • Maeng YS, Park HK (1991) Antioxidant activity of ethanol extract from Codonopsis lanceolata. Korean J Food Sci Technol 23:311–316

    CAS  Google Scholar 

  • McKersie BD, Hoekstra FA, Krieg LC (1990) Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim Biophys Acta 1030:119–126

    Article  CAS  PubMed  Google Scholar 

  • Oh HS, Kim JH (2006) Characterization of physiological functionalities of Codonopsis lanceolata Cornus officinalis S.et Z, and their mixtures. J Exp Biomed Sci 12:393–398

    Google Scholar 

  • Piruzian ES, Goldenkova IV, Lenets AA, Cvikrova M, Machakova I, Kobets NS, Mett VL, Musiichuk KA (2002) Physiological and biochemical characteristics of tobacco transgenic plants expressing bacterial dioxygenase. Russ J Plant Physiol 49:817–822

    Article  CAS  Google Scholar 

  • Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  CAS  PubMed  Google Scholar 

  • Prasil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanisms of photoinhibition and recovery processes. In: Barber J (ed) Topics in photosynthesis, vol. 11. The photosystems: structure, function and molecular biology. Elsevier Science, Amsterdam, pp 295–348

  • Price KR, Coquhoun IJ, Barnes KA, Rhodes JC (1998) Composition and content of flavonol glycosides in green beans and their fate during processing. J Agric Food Chem 46:4898–4903

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res 22:375–383

    Article  CAS  Google Scholar 

  • Richter A, Weiss A, Hausser O, Brown BA (1990) New evidence for meson-exchange-current enhancement of isovector M1 strength. Phys Rev Lett 65:2519–2522

    Article  CAS  PubMed  Google Scholar 

  • Rimmer DL (2006) Free radicals, antioxidants, and soil organic matter recalcitrance. J Soil Sci 57:91–94

    Article  CAS  Google Scholar 

  • Sakuragi Y, Maeda H, DellaPenna D, Bryant DA (2006) α-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiol 141:508–521

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY (2005) Plant molecular biology in China: opportunities and challenges. Plant Mol Biol Rep 23:345–358

    Article  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Suh JS (1996) Effect of Codonopsis lanceolata Radix water extract on immunocytes. Korean J Food Nutr 9:379–384

    Google Scholar 

  • Tschiersch H, Ohmamm E (1993) Photoinhibition in Euglena gracilis: involvement of reactive oxygen species. Planta 191:316–323

    Article  CAS  Google Scholar 

  • Xing Q, Kadota S, Tadata T, Namba T (1996) Antioxidant effect of phenylethanoids from Cistanche deserticola. Biol Pharm Bull 19:1580–1585

    Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased a-tocopherol content. Transgenic Res 16:109–113

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY (1982) The medicinal flora of Changbai Mountains. Jilin Peoples’ Press, Changchun, pp 1093–1095

    Google Scholar 

  • Zhang DX, Gutterman DD (2006) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:2023–2031

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Konkuk University BrainPool for Dr. B. K. Ghimire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill Min Chung.

Additional information

Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghimire, B.K., Seong, E.S., Goh, E.J. et al. Improving antioxidant activity in transgenic Codonopsis lanceolata plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene. Plant Growth Regul 63, 1–6 (2011). https://doi.org/10.1007/s10725-010-9488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9488-3

Keywords

Navigation