Skip to main content
Log in

New Waxy allele wx-Reina found in Chinese waxy maize

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Waxy gene mutations cause the stickiness of maize grains. China is rich in waxy maize landraces and is considered to be the origin of waxy maize. At present, the Waxy alleles found in Chinese waxy maize include wx-D7, wx-D10, wx-Cin4, and wx-124, of which wx-Cin4 and wx-124 are characterized as transposon insertion mutations. The Yunnan area has the most abundant Chinese waxy maize; however, there are still a large number of waxy maize landraces with unknown Waxy alleles. In this study, 20 waxy maize landraces from Yunnan Province of China were used as research materials for waxy gene analysis, and a new Waxy allele was detected. Molecularly, this allele is characterized by an ~ 5.4-Kb retrotransposon Reina inserted in the tenth intron of the Waxy gene, and we named this allele wx-Reina. Reina is a member of the long terminal repeat (LTR) retrotransposon family. This Reina transposon has the same LTR sequence at both ends, so this mutation is a newly formed mutation. Through reverse transcription PCR (RT-PCR) analysis, we found that Reina insertion results in the deletion of exons 10 and 11 in the transcript of wx-Reina, so its original gene function is lost. The discovery of wx-Reina further enriches the knowledge of types of waxy alleles in Chinese waxy maize. Combined with our previous studies, we believe that transposon activity is one of the main driving forces for the formation of Waxy gene alleles in Chinese waxy maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Thomas LM, Alejandro AS, Zhang JH, Zhang Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avramova Z, Tikhonov A, Sanmiguel P, Jin YK, Liu CN, Woo SS, Wing AR, Bennetzen LJ (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J 10:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Bao JD, Yao JQ, Zhu JQ, Hu WM, Cai DG, Li Y, Shu QY, Fan LJ (2012) Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Mol Breed 30:1707–1714

    Article  CAS  Google Scholar 

  • Bureau ET, Wessler RS (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau ET, Wessler RS (1994) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91:1411–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L (2004) A summary of the research on the introduction of American cereal crops into China in Ming and Qing dynasties. Anc Mod Agric 2:95–103 (in Chinese)

    Google Scholar 

  • Demerec M (1924) A case of pollen dimorphism in maize. Am J Bot 11:461–464

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fan LJ, Quan LY, Leng XD, Guo XY, Hu WM, Ruan SL, Ma HS, Zeng MQ (2008) Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Mol Breed 22:329–338

    Article  CAS  Google Scholar 

  • Fan LJ, Bao JD, Wang Y, Yao JQ, Gui YJ, Hu WM, Zhu JQ, Zeng MQ, Li Y, Xu YB (2009) Post-domestication selection in the maize starch pathway. PLoS ONE 4:e7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoroff N, Wessler SS, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 2. 0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Huang BQ, Tian ML, Zhang JJ, Huang YB (2010) Waxy locus and its mutant types in maize Zea mays L. Agric Sci China 9:1–10

    Article  CAS  Google Scholar 

  • Kijima TE, Innan H (2010) On the estimation of the insertion time of LTR Retrotransposable Elements. Mol Biol Evol 27:896–904

    Article  CAS  PubMed  Google Scholar 

  • Klösgen RB, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet 203:237–244

    Article  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Lei YT, Long WJ, Zhou GY, Cai Q, Wu SY (2016) Research and utilization of waxy maize germplasm resources in Yunnan. J Henan Agric Sci 45:1–7 (in Chinese)

    Google Scholar 

  • Liu YG, Chen YL (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rong TZ, Li WC (2007) Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Mol Breed 20:93–102

    Article  CAS  Google Scholar 

  • Liu HM, Wang XW, Wei B, Wang YB, Liu YH, Zhang JJ, Hu YF, Yu GW, Li J, Xu ZB, Huang YB (2016) Characterization of Genome-Wide Variation in Four-Row Wax, a Waxy Maize Landrace with a Reduced Kernel Row Phenotype. Front Plant Sci 7:667

    PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han LY, He JN, Lanczycki JC, Lu SN, Chitsaz F, Derbyshire KM, Geer CR, Gonzales RN, Gwadz M, Hurwitz ID, Lu F, Marchler HG, Song SJ, Thanki N, Wang ZX, Yamashita AR, Zhang DC, Zheng CJ, Geer YL, Bryant HS (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    Article  CAS  PubMed  Google Scholar 

  • Okagaki JR, Gerald MN, Wessle RS (1991) A deletion common to two independently derived waxy mutations of maize. Genetics 128:425–431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickersgill B (2007) Domestication of plants in the Americas: insights from mendelian and molecular genetics. Ann Bot 100:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schnable SP, Ware D, Fulton SR, Stein CJ, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves AT, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock MS, Belter E, Du FY, Kim K, Abbott MR, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson MS, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan CZ, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei SR, Kumari S, Faga B, Levy JM, McMahan L, Buren PV, Vaughn WM, Ying K, Ye CT, Emrich JS, Jia Y, Kalyanaraman A, Hsia AP, Brad WB, Baucom SR, Brutnell PT, Carpita CN, Chaparro C, Chia JM, Deragon JM, Estill CJ, Fu Y, Jeddeloh AJ, Han YJ, Lee H, Li PH, Lisch RD, Liu SZ, Liu ZJ, Nagel DH, McCann CM, SanMiguel P, Myers MA, Nettleton D, Nguyen J, Penning WB, Ponnala L, Schneider LK, Schwartz CD, Sharma A, Soderlund C, Springer MN, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber KT, Yang LX, Yu YS, Zhang LF, Zhou SG, Zhu QH, Bennetzen LJ, Kelly RD, Jiang JM, Jiang N, Presting GG, Wessler RS, Aluru S, Martienssen AR, Clifton WS, Richard WM, Wing AR, Wilson KR (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Leclercq L, Göbel E, Saedler H (1987) Cin4, an insert altering the structure of the Al gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J 6:3873–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DJ, Higgins GD, Gibson JT (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian ML, Huang YB, Liu YJ, Rong TZ (2003) Genetic difference between Zea mays sinensis and Zea mays indurata from Guizhou and Yunnan province revealed by SSR markers. J Sichuan Agric Univ 21:213–216 (in Chinese)

    Google Scholar 

  • Varagona JM, Purugganan M, Wessler RS (1992) Alternative splicing lnduced by lnsertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherwax P (1922) A rare carbohydrate in waxy maize. Genetics 7:568–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot R, Hua-Van A, Bennetzen LJ, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel PH, Schulman A (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wu XY, Chen D, Lu YQ, Liu WH, Yang XM, Li XQ, Du J, Li LH (2017) Molecular characteristics of two new waxy mutations in China waxy maize. Mol Breed 37:1–7

    Article  CAS  Google Scholar 

  • Yang TX, Zeng MQ, Wang P (1981) Analysis on peroxidase isozymes of waxy maize from South China. Acta Bot Sin 23:110–115 (in Chinese)

    CAS  Google Scholar 

  • Yao JQ, Bao JD, Zhu JQ, Gui YJ, Shen QF, Hu WM, Fan LJ (2013) Genetic diversity of Waxy gene in Chinese glutinous maize. Acta Agron Sin 39:43–49 (in Chinese)

    Article  CAS  Google Scholar 

  • Zeng MQ (1987) Blood relationship of Chinese waxy maize. China Seed Ind 3:8–10 (in Chinese)

    Google Scholar 

  • Zeng MQ, Yang TX, Wang P (1981) The relative analyses of maize cultivar Menghai four-row wax. Acta Genet Sin 8:91–96 (in Chinese)

    Google Scholar 

  • Zhang LL, Chen H, Luo M, Zhang XW, Deng M, Ma J, Qi PF, Wang JR, Chen GY, Liu YX, Pu ZE, Li W, Lan XJ, Wei YM, Zheng YL, Jiang QT (2017) Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. Theor Appl Genet 130:1331

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Crop Sharing and Service Platform-Yunnan Subplatform (NICGR2018-030), the Special Project of Yunnan Academy of Agricultural Sciences (YAAS2018ZY001) and the post-doctoral targeted funding of Yunnan Province.

Author information

Authors and Affiliations

Authors

Contributions

XW and SW designed and performed the experiments. WL, GZ and JD participated the experiments. DC analysed the data. XW, QC and XH wrote the manuscript.

Corresponding authors

Correspondence to Qing Cai or Xingqi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wu, S., Long, W. et al. New Waxy allele wx-Reina found in Chinese waxy maize. Genet Resour Crop Evol 66, 885–895 (2019). https://doi.org/10.1007/s10722-019-00763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-019-00763-z

Keywords

Navigation