Skip to main content

Advertisement

Log in

Development and application of a system for seminolipid metabolism using mouse seminiferous tubules

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A convenient tool for studying metabolism of seminolipid in testis was developed by using mouse isolated seminiferous tubules prepared by collagenase treatment. Because more than 99% of [35S]sulfate-incorporation was distributed in seminolipid, its metabolism in seminiferous tubules can be analyzed without disturbance of the other sulfolipids in this assay system. Furthermore, the contents of seminolipid and its precursor, galactosylalkylacylglycerol, which were determined by liquid chromatography-electrospray ionization mass spectrometry, did not change within a few hours, indicating that the incorporations of [35S]sulfate into seminolipid solely reflects the turnover rate of this sulfolipid. As an initial application of this system, we characterized heat-susceptibility of the seminolipid turnover rate in mouse seminiferous tubules. Severe heating (44°C for 10 min) of the isolated seminiferous tubules suppressed the 35S-incorporation into seminolipid to 47% of heating at scrotal temperature (32°C for 70 min). In contrast, pretreatment of the testis in vivo under the same condition (44°C for 10 min) did not decrease the seminolipid turnover rate in the isolated seminiferous tubules. In addition, the activity of galactocerebroside sulfotransferase decreased in the temperature-dependent manner in seminiferous tubules as well as crude tubular homogenates, where the activity is significantly more stable in the former than the latter. The newly developed system could provide useful basic data for further analyses of seminolipid metabolism in the testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CST:

galactocerebroside sulfotransferase

GalCer:

galactosylceramide, galactocerebroside

GalEAG:

galactosylalkylacylglycerol

HSP:

heat shock protein

LDH:

lactate dehydrogenase

LC-ESIMS:

liquid chromatography-electrospray ionization mass spectrometry

Lyso-SM4g:

lyso seminolipid

PAPS:

3′-phosphoadenylyl sulfate

SM4g:

seminolipid, GalEAG I3-sulfate

SM4s:

galactosyl sulfatide, GalCer I3-sulfate

References

  1. IUPAC-IUB Joint Commission on Biochemical Nomenclature: Nomenclature of glycolipids. Glycoconjugate J. 16, 1–6 (1999)

    Google Scholar 

  2. Ishizuka, I.: Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res. 36, 245–319 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Lingwood, C.A., Murray, R.K., Schachter, H.: The preparation of rabbit antiserum specific for mammalian testicular sulfogalactoglycerolipid. J. Immunol. 124, 769–774 (1980)

    CAS  PubMed  Google Scholar 

  4. Tanphaichitr, N., Smith, J., Mongkolsirikieart, S., Gradil, C., Lingwood, C.A.: Role of a gamete-specific sulfoglycolipid immobilizing protein on mouse sperm–egg binding. Dev. Biol. 156, 164–175 (1993)

    Article  CAS  PubMed  Google Scholar 

  5. Ahnonkitpanit, V., White, D., Suwajanakorn, S., Kan, F.W., Namking, M., Wells, G., Kamolvarin, N., Tanphaichitr, N.: Role of egg sulfolipid immobilizing protein 1 on mouse sperm–egg plasma membrane binding. Biol. Reprod. 61, 749–756 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Fujimoto, H., Tadano-Aritomi, K., Tokumasu, A., Ito, K., Hikita, T., Suzuki, K., Ishizuka, I.: Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice. J. Biol. Chem. 275, 22623–22626 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Honke, K., Hirahara, Y., Dupree, J., Suzuki, K., Popko, B., Fukushima, K., Fukushima, J., Nagasawa, T., Yoshida, N., Wada, Y., Taniguchi, N.: Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc. Natl. Acad. Sci. USA 99, 4227–4232 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Mieusset, R., Bujan, L.: Testicular heating and its possible contributions to male infertility: a review. Int. J. Androl. 18, 169–184 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Nagai, K., Roberts, D.D., Toida, T., Matsumoto, H., Kushi, Y., Handa, S., Ishizuka, I.: Mono-sulfated globopentaosylceramide from human kidney. J. Biol. Chem. 264, 16229–16237 (1989)

    CAS  PubMed  Google Scholar 

  10. Nagai, K., Tadano Aritomi, K., Iida Tanaka, N., Yoshizawa, H., Ishizuka, I.: Metabolism of sulfolipids in isolated renal tubules from rat. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 487–495 (2005)

    Article  PubMed  Google Scholar 

  11. Romrell, L.J., Bellve, A.R., Fawcett, D.W.: Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev. Biol. 49, 119–131 (1976)

    Article  CAS  PubMed  Google Scholar 

  12. Rommerts, F.F., Molenaar, R., van der Molen, H.J.: Preparation of isolated Leydig cells. Methods Enzymol. 109, 275–288 (1985)

    Article  CAS  PubMed  Google Scholar 

  13. Tadano Aritomi, K., Matsuda, J., Fujimoto, H., Suzuki, K., Ishizuka, I.: Seminolipid and its precursor/degradative product, galactosylalkylacylglycerol, in the testis of saposin A-and prosaposin-deficient mice. J. Lipid Res. 44, 1737–1743 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Tadano, K., Ishizuka, I.: Isolation and characterization of the sulfated gangliotriaosylceramide from rat kidney. J. Biol. Chem. 257, 1482–1490 (1982)

    CAS  PubMed  Google Scholar 

  15. Nagai, K., Ishizuka, I., Oda, S.: Acidic glycolipids from kidney of suncus (Insectivora). J. Biochem. (Tokyo) 95, 1501–1511 (1984)

    CAS  Google Scholar 

  16. Iida, N., Toida, T., Kushi, Y., Handa, S., Fredman, P., Svennerholm, L., Ishizuka, I.: A sulfated glucosylceramide from rat kidney. J. Biol. Chem. 264, 5974–5980 (1989)

    CAS  PubMed  Google Scholar 

  17. Ishizuka, I., Inomata, M., Ueno, K., Yamakawa, T.: Sulfated glyceroglycolipids in rat brain. Structure sulfation in vivo, and accumulation in whole brain during development. J. Biol. Chem. 253, 898–907 (1978)

    CAS  PubMed  Google Scholar 

  18. Tadano-Aritomi, K., Ishizuka, I.: Determination of peracetylated sulfoglycolipids using the azure A method. J. Lipid Res. 24, 1368–1375 (1983)

    CAS  PubMed  Google Scholar 

  19. Stoscheck, C.M.: Quantitation of protein. Methods Enzymol. 182, 50–68 (1990)

    Article  CAS  PubMed  Google Scholar 

  20. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  21. Nakai, A., Suzuki, M., Tanabe, M.: Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545–1554 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Tadano, K., Ishizuka, I.: Enzymatic sulfation of galactosyl-and lactosylceramides in cell lines derived from renal tubules. Biochim. Biophys. Acta 575, 421–430 (1979)

    CAS  PubMed  Google Scholar 

  23. Okuda, M.: The sulfoglycolipid composition and activity of glycolipid sulfotransferase in the cultured renal cell line (Madin-Darby canine kidney cell) are altered by the NaCl concentration. Teikyo Med. J. 18, 209–219 (1995). in Japanese

    CAS  Google Scholar 

  24. Momoeda, M., Cui, Y., Sawada, Y., Taketani, Y., Mizuno, M., Iwamori, M.: Pseudopregnancy-dependent accumulation of cholesterol sulfate due to up-regulation of cholesterol sulfotransferase and concurrent down-regulation of cholesterol sulfate sulfatase in the uterine endometria of rabbits. J. Biochem. (Tokyo) 116, 657–662 (1994)

    CAS  Google Scholar 

  25. Vassault, A.: Lactate dehydrogenase. In: Bergmeyer, H.U., Bergmeyer, J., Grassl, M. (eds.) Methods of Enzymatic Analysis, 3rd edn, pp. 118–126. Verlag Chemie, Weinheim (1983)

    Google Scholar 

  26. Nagai, K., Tadano-Aritomi, K., Niimura, Y., Ishizuka, I.: Effect of nutritional substrate on sulfolipids metabolic turnover in isolated renal tubules from rat. Proc. Jpn. Acad. Ser. B 84, 24–29 (2008)

    Article  CAS  Google Scholar 

  27. Kandeel, F.R., Swerdloff, R.S.: Role of temperature in regulation of spermatogenesis and the use of heating as a method for contraception. Fertil. Steril. 49, 1–23 (1988)

    CAS  PubMed  Google Scholar 

  28. Chowdhury, A.K., Steinberger, E.: A quantitative study of the effect of heat on germinal epithelium of rat testes. Am. J. Anat. 115, 509–524 (1964)

    Article  CAS  PubMed  Google Scholar 

  29. Eddy, E.M.: Role of heat shock protein HSP70-2 in spermatogenesis. Rev. Reprod. 4, 23–30 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Mayer, M.P., Bukau, B.: Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien, D.A.: Stage-specific protein synthesis by isolated spermatogenic cells throughout meiosis and early spermiogenesis in the mouse. Biol. Reprod. 37, 147–157 (1987)

    Article  PubMed  Google Scholar 

  32. Allen, R.L., O’Brien, D.A., Eddy, E.M.: A novel hsp70-like protein (P70) is present in mouse spermatogenic cells. Mol. Cell. Biol. 8, 828–832 (1988)

    CAS  PubMed  Google Scholar 

  33. Allen, R.L., O’Brien, D.A., Jones, C.C., Rockett, D.L., Eddy, E.M.: Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol. Cell. Biol. 8, 3260–3266 (1988)

    CAS  PubMed  Google Scholar 

  34. Dix, D.J., Allen, J.W., Collins, B.W., Poorman Allen, P., Mori, C., Blizard, D.R., Brown, P.R., Goulding, E.H., Strong, B.D., Eddy, E.M.: HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124, 4595–4603 (1997)

    CAS  PubMed  Google Scholar 

  35. Vos, J.P., Lopes Cardozo, M., Gadella, B.M.: Metabolic and functional aspects of sulfogalactolipids. Biochim. Biophys. Acta 1211, 125–149 (1994)

    CAS  PubMed  Google Scholar 

  36. Law, H., Itkonnen, O., Lingwood, C.A.: Sulfogalactolipid binding protein SLIP 1: a conserved function for a conserved protein. J. Cell. Physiol. 137, 462–468 (1988)

    Article  CAS  PubMed  Google Scholar 

  37. Boulanger, J., Faulds, D., Eddy, E.M., Lingwood, C.A.: Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: role in gamete recognition and mycoplasma-related infertility. J. Cell. Physiol. 165, 7–17 (1995)

    Article  CAS  PubMed  Google Scholar 

  38. Mamelak, D., Lingwood, C.: Expression and sulfogalactolipid binding specificity of the recombinant testis-specific cognate heat shock protein 70. Glycoconj. J. 14, 715–722 (1997)

    Article  CAS  PubMed  Google Scholar 

  39. Hirahara, Y., Tsuda, M., Wada, Y., Honke, K.: cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase. Eur. J. Biochem. 267, 1909–1917 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Eckhardt, M., Fewou, S.N., Ackermann, I., Gieselmann, V.: N-glycosylation is required for full enzymic activity of the murine galactosylceramide sulphotransferase. Biochem. J. 368, 317–324 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Yusa, A., Kitajima, K., Habuchi, O.: N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1. Biochem. J. 388, 115–121 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Nagai.

Additional information

We dedicate this article to the memory of Prof. Ishizuka (deceased).

Abbreviations for lipids follow those of the IUPAC-IUB Joint Commission on Biochemical Nomenclature [1] and the symbols for sulfoglycolipids follow the system of Ishizuka [2].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, Ki., Tadano-Aritomi, K., Niimura, Y. et al. Development and application of a system for seminolipid metabolism using mouse seminiferous tubules. Glycoconj J 27, 181–187 (2010). https://doi.org/10.1007/s10719-009-9250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9250-0

Keywords

Navigation