Skip to main content
Log in

Testing \(R_h=ct\) cosmology from fundamental considerations: Is the Friedmann universe intrinsically flat

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recently Melia and Shevchuk (Mon Not R Astron Soc 419:2579,2012) (MS) have proposed the so-called \(R_h =ct\) cosmology where the “Gravitational Horizon” of the universe \(R_h\) is equal to the distance travelled by light since “Big Bang”. Here we would like to see whether the basic claim \(R_h=ct\) is correct or not because MS have not given any cogent derivation for the same. Essentially we will compare the twin expressions for the Einstein energy momentum complex (EMC) of the Friedmann universe obtained by using an appropriate superpotential and also by a direct method. To enable a meaningful comparison of the twin expressions, both are computed by using the same quasi-Cartesian coordinates. We however do not claim that Einstein EMC is superior to many other routes of defining EM of a self-gravitating system. In fact, for static isolated spherical syatems, the idea of a coordinate independent field energy of Lynden-Bell and Katz (Mon Not R Astron Soc 213:21, 1985) might be quite physically significant. Yet, here, we use Einstein EMC because (i) our system is non-static and not isolated one (ii) our primary aim is not find any absolute value of EM, and, finally, (iii) only Einstein pseudo-tensor offers equivalent twin expressions for EM which one can be equated irrespective of any physical significance. Following such comparison of equivalent twin expressions of Einstein energy, we find an exact proof as to why Friedmann universe must be spatially flat even though, mathematically one can conceive of curved spaces in any dimension. Additionally, it follows that, apparently, the scale factor \(S(t) \propto t\) as insisted by \(R_h=ct\) proposition. Nonetheless, because of close similarity of this form, \(S(t) \propto t\), with the (vacuum) Milne metric, and also because of implied unphysical equation of state, \(R_h=ct\) cosmology is unlikely to represent the physical universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melia, F., Shevchuk, A.S.H.: Mon. Not. R. Astron. Soc. 419, 2579 (2012)

    Article  ADS  Google Scholar 

  2. Melia, F.: Aust. Phys. 49, 83 (2012). (arXiv:1205.2713)

  3. Melia, F., Abdelqader, M.: Int. J. Mod. Phys. D. 18, 1889 (2009). (arXiv:0907.5394)

  4. Mitra, A.: Grav. Cosmol. 19, 134 (2013)

    Article  ADS  MATH  Google Scholar 

  5. Bondi, H., Proc, R.: Soc. Lond. A427, 249 (1990)

    Article  ADS  Google Scholar 

  6. Szabados, L.B.: Liv. Rev. Rel. 12, 4 (2009). www.livingreviews.org/lrr-2009-4

  7. Chang, C., Nester, J.M., Chen, C.: Phys. Rev. Letts. 83, 1897–1901 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Xulu, S.S.: hep-th/0308070 (2003)

  9. Lynden-Bell, D., Katz, J.: Mon. Not. R. Astron. Soc. 213, 21 (1985)

    ADS  MathSciNet  Google Scholar 

  10. Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity. McGraw Hill, NY (1965)

    MATH  Google Scholar 

  11. Tolman, R.C.: Phys. Rev. 35(8), 875 (1930)

    Article  ADS  MATH  Google Scholar 

  12. Tolman, R.C.: Relativity, Thermodynamics and Cosmology. Oxford University Press, Oxford (1962)

    Google Scholar 

  13. Mitra, A.: Gen. Relativ. Gravit. 42, 443 (2010). (arXiv:0911.2340)

  14. Deruelle, N., Katz, J., Uzan, J.-P.: Class. Quant. Grav. 14, 421 (1997). (arXiv:gr-qc/9608046)

  15. Rosen, N.: Gen. Relativ. Gravit. 26(3) (1994)

  16. Mitra, A.: JCAP 03, 007 (2013)

    Article  ADS  Google Scholar 

  17. Melia, F.: Astron. J. 144, 110 (2012)

    Article  ADS  Google Scholar 

  18. Bikwa, O., Melia, F., Shevchuk, A.: Mon. Not. R. Astron. Soc. 421, 3356 (2012)

    Article  ADS  Google Scholar 

  19. Melia, F.: Astrophys. J. 764, 72 (2013)

    Article  ADS  Google Scholar 

  20. Wei, J.-J., Wu, X.-F., Melia, F.: Astrophys. J. 772, 43 (2013)

    Article  ADS  Google Scholar 

  21. Melia, F.: Astron. Astrophys. 553, A76 (2013). (arXiv:1206.6527)

  22. Melia, F.: Mon. Not. R. Astron. Soc. 432, 2669 (2013). (arXiv:1304.1802)

  23. Rindler, W.: Mon. Not. R. Astronon. Soc. 116, 662 (1956)

    ADS  MathSciNet  Google Scholar 

  24. Mitra, A.: New Astronomy (2014). doi:10.1016/j.newast.2013.12.002

Download references

Acknowledgments

The author is thankful to the referee for several useful critiques and suggestions. In particular, the suggestion that \(R_h=ct\) cosmology, in view with its simililarity with the Milne metric \(S(t) \propto t\), may represent a vacuum universe and not the real universe was due to the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhas Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A. Testing \(R_h=ct\) cosmology from fundamental considerations: Is the Friedmann universe intrinsically flat. Gen Relativ Gravit 46, 1670 (2014). https://doi.org/10.1007/s10714-014-1670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1670-x

Keywords

Navigation