Skip to main content
Log in

Introduction to causal sets and their phenomenology

  • Invited Report: Introduction to Current Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this introduction to the causal set approach to the problem of quantum gravity, I emphasise that causal sets are both fundamentally discrete and Lorentz invariant, which makes them nonlocal. I focus on opportunities for phenomenology arising from and stimulated by causal sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A strongly causal spacetime is one in which the local causal order in a convex normal neighbourhood is the restriction of the global causal order to the neighbourhood. A past and future distinguishing spacetime is one in which distinct points have distinct chronological pasts and futures.

  2. This representation of the causet is called a Hasse diagram.

    Fig. 1
    figure 1

    The Hasse diagram of a causet generated by sprinkling into \(1+1\) dimensional Minkowski spacetime. The elements are the black dots and the blue edges are the links or nearest neighbour relations

References

  1. Jacobson, T., Parentani, R.: Found. Phys. 33, 323 (2003). doi:10.1023/A:1023785123428

    Article  MathSciNet  Google Scholar 

  2. Hartle, J.B.: In: Schwarz, J. (ed.) Elementary Particles and the Universe. CUP, Cambridge (1991)

    Google Scholar 

  3. Sorkin, R.D.: First steps with causal sets. In: Cianci, R., de Ritis, R., Francaviglia, M., Marmo, G., Rubano, C., Scudellaro, P. (eds.) Proceedings of the Ninth Italian Conference on General Relativity and Gravitational Physics, Capri, Italy, September 1990, pp. 68–90. World Scientific, Singapore (1991)

  4. Sorkin, R.D.: Relativity and gravitation: classical and quantum. In: D’Olivo, J.C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Urrutia, L.F., Zertuche, F. (eds.) Proceedings of the SILARG VII Conference, Cocoyoc, Mexico, December 1990, pp. 150–173. World Scientific, Singapore (1991)

  5. Penrose, R.: Techniques of Differential Topology in Relativity. SIAM, Philadelphia (1972)

    Book  MATH  Google Scholar 

  6. Hawking, S.W., King, A.R., McCarthy, P.J.: J. Math. Phys. 17, 174 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  8. Malament, D.B.: J. Math. Phys. 18, 1399 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Levichev, A.V.: Soviet Math. Dokl. 35, 452 (1987)

    MATH  Google Scholar 

  10. Parrikar, O., Surya, S.: Class. Quantum Gravit. 28, 155020 (2011). doi:10.1088/0264-9381/28/15/155020

    Article  MathSciNet  ADS  Google Scholar 

  11. Gibbons, G., Hawking, S.: Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738

    Article  MathSciNet  ADS  Google Scholar 

  12. Sorkin, R.D.: Phys. Rev. Lett. 56, 1885 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  13. Sorkin, R.D.: Int. J. Theor. Phys. 36, 2759 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rideout, D., Sorkin, R.: Phys. Rev. D 63, 104011 (2001). doi:10.1103/PhysRevD.63.104011

    Article  MathSciNet  ADS  Google Scholar 

  15. Riemann, B.: Über die hypothesen, welche der geometrie zu grunde liegen (1868). Riemann’s Habiliationsschrift, Göttingen (1954)

    Google Scholar 

  16. Myrheim, J.: Statistical geometry. CERN, preprint TH-2538 (1978)

  17. ’t Hooft, G.: Recent developments in gravitation. In: Levy, M., Deser, S. (eds.) Proceedings of the 1978 Cargese Summer Institute. Plenum, Berlin (1979)

  18. Bombelli, L., Lee, J.H., Meyer, D., Sorkin, R.: Phys. Rev. Lett. 59, 521 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hawking, S.W.: Phys. Rev. D 46, 603 (1992). doi:10.1103/PhysRevD.46.603

  20. Bombelli, L., Henson, J., Sorkin, R.D.: Mod. Phys. Lett. A 24, 2579 (2009). doi:10.1142/S0217732309031958

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Moore, C.: Phys. Rev. Lett. 60, 655 (1988). doi:10.1103/PhysRevLett.60.655

    Article  MathSciNet  ADS  Google Scholar 

  22. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Phys. Rev. Lett. 60, 656 (1988). doi:10.1103/PhysRevLett.60.656

    Article  MathSciNet  ADS  Google Scholar 

  23. Meyer, D.: The dimension of causal sets. PhD Thesis, MIT (1988)

  24. Brightwell, G., Gregory, R.: Phys. Rev. Lett. 66, 260 (1991). doi:10.1103/PhysRevLett.66.260

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Major, S., Rideout, D., Surya, S.: J. Math. Phys. 48, 032501 (2007). doi:10.1063/1.2435599

    Article  MathSciNet  ADS  Google Scholar 

  26. Major, S., Rideout, D., Surya, S.: Class. Quantum Gravit. 26, 175008 (2009). doi:10.1088/0264-9381/26/17/175008

    Article  MathSciNet  ADS  Google Scholar 

  27. Benincasa, D.M.T., Dowker, F.: Phys. Rev. Lett. 104, 181301 (2010). doi:10.1103/PhysRevLett.104.181301

    Article  MathSciNet  ADS  Google Scholar 

  28. Dowker, F., Glaser, L.: Causal set d’Alembertians for various dimensions. Class. Quantum Gravit. (2013) arXiv:1305.2588

  29. Bombelli, L.: J. Math. Phys. 41, 6944 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Noldus, J.: Class. Quantum Gravit. 21, 839 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Sorkin, R.: Ann. Phys. 168, 119 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Dowker, F., Henson, J., Sorkin, R.D.: Mod. Phys. Lett. A 19, 1829 (2004). doi:10.1142/S0217732304015026

    Article  MathSciNet  ADS  Google Scholar 

  33. Dudley, R.: Arkiv för Matematik 6, 241 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  34. Philpott, L.: Class. Quantum Gravit. 27, 042001 (2010). doi:10.1088/0264-9381/27/4/042001

    Article  MathSciNet  ADS  Google Scholar 

  35. Kaloper, N., Mattingly, D.: Phys. Rev. D 74, 106001 (2006). doi:10.1103/PhysRevD.74.106001

    Article  MathSciNet  ADS  Google Scholar 

  36. Philpott, L., Dowker, F., Sorkin, R.D.: Phys. Rev. D 79, 124047 (2009). doi:10.1103/PhysRevD.79.124047

    Article  MathSciNet  ADS  Google Scholar 

  37. Contaldi, C.R., Dowker, F., Philpott, L.: Class. Quantum Gravit. 27, 172001 (2010). doi:10.1088/0264-9381/27/17/172001

    Article  MathSciNet  ADS  Google Scholar 

  38. Sokolov, A., Ternov, I.: Sov. Phys. Dokl. 8, 1203 (1964)

    ADS  Google Scholar 

  39. Sorkin, R.D.: Does locality fail at intermediate length-scales? In: Oriti, D. (ed.) Approaches to Quantum Gravity: Towards a New Understanding of Space and Time. Cambridge University Press, Cambridge (2006)

  40. Henson, J.: The causal set approach to quantum gravity. In: Oriti, D. (ed.) Approaches to Quantum Gravity: Towards a New Understanding of Space and Time. Cambridge University Press, Cambridge (2006)

  41. Johnston, S.: Phys. Rev. Lett. 103, 180401 (2009). doi:10.1103/PhysRevLett.103.180401

    Article  MathSciNet  ADS  Google Scholar 

  42. Sorkin, R.D.: J. Phys. Conf. Ser. 306, 012017 (2011). doi:10.1088/1742-6596/306/1/012017

    Article  ADS  Google Scholar 

  43. Sorkin, R.D.: Mod. Phys. Lett. A 9, 3119 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Dirac, P.A.M.: Physikalische Zeitschrift der Sowjetunion 3, 64 (1933)

    Google Scholar 

  45. Kleitman, D., Rothschild, B.: Trans. Am. Math. Soc. 205, 205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rideout, D.P., Sorkin, R.D.: Phys. Rev. D 61, 024002 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  47. Brightwell, G.: Talk at ‘Causets at DIAS II’. Dublin Institute for Advanced Study, Dublin (2009)

    Google Scholar 

  48. Martin, X., O’Connor, D., Rideout, D.P., Sorkin, R.D.: Phys. Rev. D 63, 084026 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  49. Sorkin, R.D.: Int. J. Theor. Phys. 39, 1731 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ahmed, M., Rideout, D.: Indications of de sitter spacetime from classical sequential growth dynamics of causal sets. Phys. Rev. D81, 083528 (2010). doi:10.1103/PhysRevD.81.083528

  51. Surya, S.: Class. Quantum Gravit. 29, 132001 (2012). doi:10.1088/0264-9381/29/13/132001

    Article  MathSciNet  ADS  Google Scholar 

  52. Ahmed, M., Dodelson, S., Greene, P.B., Sorkin, R.: Phys. Rev. D 69, 103523 (2004)

    Article  ADS  Google Scholar 

  53. Ahmed, M., Sorkin, R.: Phys. Rev. D 87, 063515 (2013). doi:10.1103/PhysRevD.87.063515

    Article  ADS  Google Scholar 

  54. Barrow, J.D.: Phys. Rev. D 75, 067301 (2007). doi:10.1103/PhysRevD.75.067301

    Article  ADS  Google Scholar 

  55. Zuntz, J.A.: Phys. Rev. D 77, 043002 (2008). doi:10.1103/PhysRevD.77.043002

    Article  MathSciNet  ADS  Google Scholar 

  56. Kent, A.: (2013). doi:10.1007/s10701-013-9716-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fay Dowker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowker, F. Introduction to causal sets and their phenomenology. Gen Relativ Gravit 45, 1651–1667 (2013). https://doi.org/10.1007/s10714-013-1569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1569-y

Keywords