Skip to main content
Log in

Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

After the approval by the Italian Space Agency of the LARES satellite, which should be launched at the end of 2009 with a VEGA rocket and whose claimed goal is a ≈1% measurement of the general relativistic gravitomagnetic Lense–Thirring effect in the gravitational field of the Earth, it is of the utmost importance to reliably assess the total realistic accuracy that can be reached by such a mission. The observable is a linear combination of the nodes of the existing LAGEOS and LAGEOS II satellites and of LARES able to cancel out the impact of the first two even zonal harmonic coefficients of the multipolar expansion of the classical part of the terrestrial gravitational potential representing a major source of systematic error. While LAGEOS and LAGEOS II fly at altitudes of about 6,000 km, LARES should be placed at an altitude of 1,450 km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS II. Their corrupting impact has been evaluated up to degree  = 70 by using the sigmas of the covariance matrices of eight different global gravity solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, JEM01-RL03B, ITG-Grace02s, ITG-Grace03, EGM2008) obtained by five institutions (GFZ, CSR, JPL, IGG, NGA) with different techniques from long data sets of the dedicated GRACE missions. It turns out to be ≈100–1,000% of the Lense–Thirring effect. An improvement of 2–3 orders of magnitude in the determination of the high degree even zonals would be required to constrain the bias to ≈1–10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciufolini I.: Phys. Rev. Lett. 56, 278 (1986)

    Article  ADS  Google Scholar 

  2. Ciufolini I.: N. Cim. A 109, 1709 (1996)

    Article  ADS  Google Scholar 

  3. Ciufolini, I.: LARES/WEBER-SAT, frame-dragging and fundamental physics (preprint, 2004). (gr-qc/0412001v3)

  4. Ciufolini, I.: On the orbit of the LARES satellite (preprint, 2006). (gr-qc/0609081v1)

  5. Ciufolini I. et al.: LARES Phase A. University La Sapienza, Rome (1998)

    Google Scholar 

  6. Ciufolini, I.: Downloadable at http://www.infn.it/indexen.php→ASTROPARTICLEPHYSICS→ Calendarioriunioni→Roma,30gennaio2008→14:30AggiornamentoLARES(20’)→lares_dellagnello. pdf, p. 17 (2008)

  7. Everitt C.W.F.: The Gyroscope Experiment I. In: General, description, analysisofgyroscopeperformance. Bertotti, B. (eds) Proc. Int. School Phys. “Enrico Fermi” Course LVI, pp. 331–60. New Academic Press, New York (1974)

    Google Scholar 

  8. Everitt C.W.F. et al.: Gravity Probe B: Countdown to Launch in Gyros, Clocks. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Interferometers...: Testing Relativistic Gravity in Space, pp. 52–82. Springer, Berlin (2001)

    Chapter  Google Scholar 

  9. Förste, C., et al.: A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. EGU General Assembly 2005 Vienna, AT, 24–29 April 2005

  10. Inversi P., Vespe F.: Adv. Space Res. 14, 73 (1994)

    Article  ADS  Google Scholar 

  11. Iorio L.: Class. Quantum Grav. 19, L175 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Iorio L.: Celest. Mech. Dyn. Astron. 86, 277 (2003)

    Article  MATH  ADS  Google Scholar 

  13. Iorio L.: New Astron. 10, 616 (2005)

    Article  ADS  Google Scholar 

  14. Iorio, L.: J. Cosmol. Astropart. Phys. JCAP07 (2005)008 (2005)

  15. Iorio L.: Planet. Space Sci. 55, 1198 (2007)

    Article  ADS  Google Scholar 

  16. Iorio L.: Europhys. Lett. 80, 40007 (2007)

    Article  ADS  Google Scholar 

  17. Iorio L., Lucchesi D.M., Ciufolini I.: Class. Quantum Grav. 19, 4311 (2002)

    Article  MATH  ADS  Google Scholar 

  18. Kaula W.M.: Theory of Satellite Geodesy. Blaisdell, Waltham (1966)

    Google Scholar 

  19. Lense J., Thirring H.: Phys. Z. 19, 156 (1918)

    Google Scholar 

  20. Lucchesi D.M.: Planet. Space Sci. 49, 447 (2001)

    Article  ADS  Google Scholar 

  21. Lucchesi D.M.: Planet. Space Sci. 50, 1067 (2002)

    Article  ADS  Google Scholar 

  22. Lucchesi D.M.: Geophys. Res. Lett. 30, 1957 (2003)

    Article  ADS  Google Scholar 

  23. Lucchesi D.M.: Celest. Mech. Dyn. Astron. 88, 269 (2004)

    Article  MATH  ADS  Google Scholar 

  24. Lucchesi, D.M., Paolozzi, A.: A cost effective approach for LARES satellite XVI Congresso Nazionale AIDAA, Palermo, IT, 24–28 September 2001

  25. Lucchesi D.M., Ciufolini I., Andrés J.I., Pavlis E.C., Peron R., Noomen R., Currie D.G.: Planet. Space Sci. 52, 699 (2004)

    Article  ADS  Google Scholar 

  26. Mashhoon B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (eds) The Measurement of Gravitomagnetism: A Challenging Enterprise., pp. 29–39. NOVA, Hauppauge (2007)

    Google Scholar 

  27. Mayer-Gürr, T., Eicker, A., Ilk, K.-H.: ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbit. In: First Int. Symp. of the International Gravity Field Service “Gravity field of the earth”, Istanbul, TR, 28 August–1 September 2006

  28. Mayer-Gürr, T.: ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. In: Joint Int. GSTM and DFG SPP Symp., Potsdam, D, 15–17 October 2007. http://www.geod.uni-bonn.de/itg-grace03.html

  29. Milani A., Nobili A.M., Farinella P.: Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol (1987)

    MATH  Google Scholar 

  30. Pavlis, N.K., et al.: Paper presented at the 2008 General Assembly of the European Geosciences Union, Vienna, 13–18 April 2008

  31. Pfister H.: Gen. Relativ. Gravit. 39, 1735 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Pugh, G.E.: WSEG Research Memorandum No. 11 (1959)

  33. Reigber Ch., Schmidt R., Flechtner F., König R., Meyer U., Neumayer K.-H., Schwintzer P., Zhu S.Y.: J. Geodyn. 39, 1 (2005)

    Article  Google Scholar 

  34. Ries, J.C., Eanes, R.J., Watkins, M.M., Tapley, B.: Joint NASA/ASI Study on Measuring the Lense–Thirring Precession Using a Second LAGEOS Satellite. CSR-89-3. The University of Texas at Austin: Center for Space Research (1989)

  35. Ries J.C., Eanes R.J., Tapley B.D.: Lense–Thirring precession determination from laser ranging to artificial satellites nonlinear gravitodynamics. In: Ruffini, R.J., Sigismondi, C. (eds) The Lense–Thirring Effect., pp. 201–211. World Scientific, Singapore (2003)

    Google Scholar 

  36. Ruggiero, M.L., Tartaglia, A.: N. Cim. B 1179, 743 (2002)

    ADS  Google Scholar 

  37. Schiff L.: Phys. Rev. Lett. 4, 215 (1960)

    Article  ADS  Google Scholar 

  38. Tapley B.D. et al.: J. Geod. 79, 467 (2005)

    Article  ADS  Google Scholar 

  39. Tapley, B.D., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.: American Geophysical Union, Fall Meeting, abstract #G42A-03 (2007)

  40. Van Patten R.A., Everitt C.W.F.: Phys. Rev. Lett. 36, 629 (1976)

    Article  ADS  Google Scholar 

  41. Van Patten R.A., Everitt C.W.F.: Celest. Mech. Dyn. Astron. 13, 429 (1976)

    Google Scholar 

  42. Vespe F.: Adv. Space Res. 23, 699 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iorio, L. Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?. Gen Relativ Gravit 41, 1717–1724 (2009). https://doi.org/10.1007/s10714-008-0742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0742-1

Keywords

Navigation