Skip to main content

Advertisement

Log in

Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Recent dramatic acceleration, thinning and retreat of tidewater outlet glaciers in Greenland raises concern regarding their contribution to future sea-level rise. These dynamic changes seem to be parallel to oceanic and climatic warming but the linking mechanisms and forcings are poorly understood and, furthermore, large-scale ice sheet models are currently unable to realistically simulate such changes which provides a major limitation in our ability to predict dynamic mass losses. In this paper we apply a specifically designed numerical flowband model to Jakobshavn Isbrae (JIB), a major marine outlet glacier of the Greenland ice sheet, and we explore and discuss the basic concepts and emerging issues in our understanding and modelling ability of the dynamics of tidewater outlet glaciers. The modelling demonstrates that enhanced ocean melt is able to trigger the observed dynamic changes of JIB but it heavily relies on the feedback between calving and terminus retreat and therefore the loss of buttressing. Through the same feedback, other forcings such as reduced winter sea-ice duration can produce similar rapid retreat. This highlights the need for a robust representation of the calving process and for improvements in the understanding and implementation of forcings at the marine boundary in predictive ice sheet models. Furthermore, the modelling uncovers high sensitivity and rapid adjustment of marine outlet glaciers to perturbations at their marine boundary implying that care should be taken in interpreting or extrapolating such rapid dynamic changes as recently observed in Greenland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2001) Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J Geophys Res 106(D24):33729–33742

    Article  Google Scholar 

  • Albrecht T, Martin MA, Winkelmann R, Haseloff M, Levermann A (2011) Parameterization for subgrid-scale motion of ice-shelf calving fronts. Cryosphere 5:35–44

    Article  Google Scholar 

  • Alley RB et al (2010) History of the Greenland ice sheet: paleoclimatic insights. Q Sci Rev 29:1728–1756

    Article  Google Scholar 

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level change. Science 310:456–460

    Article  Google Scholar 

  • Alley RB, Horgan HJ, Joughin I, Cuffey KM, Dupont TK, Parizek BR, Anandakrishnan S, Bassis J (2008) A simple law for ice-shelf calving. Science 322(5906):1344

    Article  Google Scholar 

  • Amundson JM, Truffer M (2010) A unifying framework for iceberg-calving models. J Glaciol 56(199):822–830

    Article  Google Scholar 

  • Amundson JM, Fahnestock M, Truffer M, Brown J, Luethi MP, Motyka RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J Geophys Res 115(F01005). doi:10.1029/2009JF001405

  • Bamber JL, Alley RB, Joughin I (2007) Rapid response of modern day ice sheets to external forcing. Earth Plan Res Lett 257:1–13

    Article  Google Scholar 

  • Bartholomew I, Nienow P, Shepherd A (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat Geosci 3:408–411

    Article  Google Scholar 

  • Bassis J (2010) Hamilton-type principles applied to ice-sheet dynamics: new approximations for large-scale ice sheet flow. J Glaciol 56(197):497–513

    Article  Google Scholar 

  • Bassis J (2011) The statistical physics of iceberg calving and the emergence of universal calving laws. J Glaciol 57(201):3–16

    Article  Google Scholar 

  • Benn DI, Warren CR, Mottram RH (2007) Calving processes and the dynamics of calving glaciers. Earth Sci R 82:143–179

    Article  Google Scholar 

  • Bindschadler R (1997) Actively surging West Antarctic ice streams and their response characteristics. Ann Glaciol 24:409–414

    Google Scholar 

  • Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stresses. J Glaciol 41(138):333–344

    Google Scholar 

  • Bueler E, Brown J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J Geophys Res 114(F03008). doi:10.1029/2008JF001179

  • Csatho B, Schenk T, van der Veen CJ, Krabill WB (2008) Intermittent thinning of Jakobshavn Isbrae, west Greenland, since Little Ice Age. J Glaciol 54(184):131–144

    Article  Google Scholar 

  • Docquier D, Perichon L, Pattyn F (2011) Representing grounding line dynamics in numerical models ice sheet models: recent advances and outlook. Surv Geophys. doi:10.1007/s10712-011-9133-3

  • Dupont TK, Alley RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys Res Lett 32:L04503. doi:10.1029/2004GL022024

  • Dupont TK, Alley RB (2006) Role of small ice shelves in sea-level rise. Geophys Res Lett 33:L09503. doi:10.1029/2005GL025665

  • Durand G, Gagliardini O, de Fleurina B, Zwinger T, Le Meur E (2009) Marine ice sheet dynamics: hysterisis and neutral equilibrium. J Geophys Res 114(F03009). doi:10.1029/2008JF001170

  • Echelmeyer K, Clarke TS, Harrison WD (1990) Jakobshavn Isbrae, west Greenland, seasonal variations in velocity or the lack of thereof. J Glaciol 36(122):82–88

    Google Scholar 

  • Echelmeyer KA, Harrison W, Larsen C, Mitchell JE (1994) The role of the margins in the dynamics of an active ice stream. J Glaciol 40(136):527–538

    Google Scholar 

  • Fowler AC (2010) Weertman, Lliboutry and the development of sliding. J Glaciol 56(200):965–972

    Article  Google Scholar 

  • Gagliardini O, Cohen D, Raback P, Zwinger T (2007) Finite-element modelling of subglacial cavities and related friction law. J Geophys Res 112(F02027). doi:10.1029/2006JF000576

  • Gillet-Chaulet F, Gagliardini O, Nodet M, Ritz C, Durand G, Zwinger T, Seddik H, Greve R (2011) Full-Stokes finite element modelling of the Greenland ice sheet using inverse methods. Geophys Res Abs 13(EGU2011-8399)

    Google Scholar 

  • Gladstone R, Lee V, Vieli A, Payne AJ (2010) Grounding line migration in an adaptive mesh ice sheet model. J Geophys Res 115(F04014). doi:10.1029/2009JF001615

  • Goldberg D, Holland DM, Schoof C (2009) Grounding line movement and buttressing in marine ice sheets. J Geophys Res 114(F04026). doi:10.1029/2008JF001227

  • Goldberg D (2011) A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J Glaciol 57(201):157–170

    Article  Google Scholar 

  • Holland DM, Thomas TRH, deYoung B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1:659–664

    Article  Google Scholar 

  • Holland PR, Jenkins A, Holland DM (2010) Ice ocean processes in the Bellingshausen Sea, Antarctica. J Geophys Res 115(C05020). doi:10.1029/2008JC005219

  • Howat I, Joughin I, Fahnestock M, Smith B, Scambos T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate. J Glaciol 54:646–660

    Article  Google Scholar 

  • Howat IH, Joughin I, Scambos TA (2007) Rapid changes of ice discharge from Greenland outlet glaciers. Science 315:1559–1561

    Article  Google Scholar 

  • Howat IM, Box JE, Ahn Y, Herrington A, McFadden EM (2010) Seasonal variability in the dynamics of marine terminating outlet glaciers in Greenland. J Glaciol 56(198):601–613

    Article  Google Scholar 

  • Hughes T (1986) The Jacobshavn effect. Geophys Res Lett 13(1):46–48

    Article  Google Scholar 

  • IPCC (2007) Climate change, 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

  • Joughin I, Rignot E, Rosanova CE, Luchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island glacier, Antarctica. Geophys Res Lett 30(13):1706

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobhavn Isbrae glacier. Nature 432:608–610

    Article  Google Scholar 

  • Joughin I, Alley RB, Ekstroem G, Fahnestock M, Moon T, Nettles M, Truffer M, Tsai VC (2008a) Ice-front variation and tidewater behaviour on Helheim and Kangerdlugssuaq Glaciers, Greenland. J Geophys Res 113:F01004. doi:10.1029/2007JF000837

  • Joughin I, Das SB, King MA, Smith BE, Howat IH, Moon T (2008b) Seasonal speedup along the Western margin of the Greenland ice sheet. Science 320:781–783

    Article  Google Scholar 

  • Joughin I, Howat I, Fahnestock M, Smith B, Krabill W, Alley RB, Stern H, Truffer M (2008c) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res 113:F04006. doi:10.1029/2008JF001023

  • Joughin I, Smith B, Howat IM, Scambos T, Moon T (2010a) Greenland flow variability from ice sheet wide velocity mapping. J Glaciol 56(197):415–430

    Article  Google Scholar 

  • Joughin I, Smith BE, Holland DM (2010b) Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys Res Lett 37(L20502)

  • Katz RF, Worster MG (2010) Stability of ice-sheet grounding lines. Proc R Soc Lond Ser A 466:1597–1620

    Article  Google Scholar 

  • Khazendar A, Rignot E, Larour E (2009) Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills ice shelf. J Geophys Res 114(F04007). doi:10.1029/2008JF001124

  • Koenig L, Martin S, Stuedinger M, Sonntag J (2010) Polar airborne observations fill gap in satellite data. Eos 91(38):333–334

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

  • Larour E, Rignot E, Aubry D (2004) Modelling of rift propagation on Ronne ice shelf, Antarctica, and sensitivity to climate change. Geophys Res Lett 31:L16404. doi:10.1029/2004GL020077

  • Lloyd J, Moros M, Perner K, Telford RJ, Kuijpers A, Jansen E, McCarthy D (2011) A 100-year record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland. Geology 39:131–139

    Google Scholar 

  • Luckman A, Murray T (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbrae, Greenland. Geophys Res Lett 32(L08501). doi:10.1029/2005GL022519

  • Luethi MP, Fahnestock MA, Truffer M, Motyka RJ (2009) Jakobshavn Isbrae: is there a speed limit? Eos Trans AGU, Fall Meet Suppl 90(52), meet. Suppl. Abstract C14A-03

  • MacAyeal DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J Geophys Res 94(B4):4071–4087

    Article  Google Scholar 

  • Meier MF, Post A (1987) Fast tidewater glaciers. J Geophys Res 92(B9):9051–9058

    Article  Google Scholar 

  • Moon T, Joughin I (2008) Changes in ice front positions on Greenland’s outlet glaciers from 1992 to 2007. J Geophys Res 113(F202022):415–430

    Google Scholar 

  • Motyka R, Hunter L, Echelmeyer K, Conner C (2002) Submarine melting at the terminus of a temperate tidewater glacier, LeCont Glacier, Alaska, U.S.A. Ann Glaciol 36(1):57–65

    Article  Google Scholar 

  • Motyka RJ, Truffer M, Fahnestock MA, Mortesen J, Rysgaard S, Howat I (2011) Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J Geophys Res 116(F01007). doi:10.1029/2009JF001632

  • Murray T, Scharrer K, James TD, Dye SR, Hanna E, Booth AD, Selems N, Luckman A, Hughes ALC, Cook S, Hybrechts P (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications ice sheet mass change. J Geophys Res 115(F03026). doi:10.1029/2009JF001522

  • Nick FN, Vieli A, Howat I, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2:110–114

    Article  Google Scholar 

  • Nick FN, van der Veen CJ, Vieli A, Benn DI (2010) A physically based calving model applied to marine outlet glaciers and implications for their dynamics. J Glaciol 56(199):781–794

    Article  Google Scholar 

  • Nowicki SMJ, Wingham DJ (2008) Conditions for a steady ice sheet-ice shelf junction. Earth Plan Res Lett 265:246–255

    Article  Google Scholar 

  • Nye JF (1963) The response of a glacier to changes in the rate of nourishment and wastage. Proc R Soc Lond Ser A 275:87–112

    Article  Google Scholar 

  • Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J Geophys Res 108(B8):2382–2395

    Article  Google Scholar 

  • Pattyn F, Huyghe A, de Brabander S, de Smedt B (2006) Role of transition zones in marine ice sheet dynamics. J Geophys Res 111(F02004). doi:10.1029/2005JF000394

  • Pattyn F, Perichon L, Aschwanden A et al (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere 2:95–108

    Article  Google Scholar 

  • Payne A, Holland PR, Shepherd A, Rutt IC, Jenkins A, Joughin I (2007) Numerical modelling of ocean -ice interactions under Pine Island Bay’s ice shelf. J Geophys Res 112(C10019)

  • Payne AJ, Vieli A, Shepherd AP, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23401

    Article  Google Scholar 

  • Pfeffer WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J Geophys Res 112:F03S25. doi:10.1029/2006JF000590

  • Pfeffer WT, Harper J, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343

    Article  Google Scholar 

  • Phillips T, Rajaram H, Steffen K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys Res Lett 37(L20503). doi:10.1029/2010GL044397

  • Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–333

    Article  Google Scholar 

  • Pralong A, Funk M, Luthi MP (2003) A description of crevasse formation using continuum damage mechanics. Ann Glaciol 37:77–82

    Article  Google Scholar 

  • Price SF, Pane AJ, Howat IM, Smith B (2011) Commited sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc Nat Acad Sci (in press)

  • Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975

    Google Scholar 

  • Reeh N, Thompsen HH, Higgins AK, Weidick A (2001) Sea ice and the stability of north and northeast Greenland floating glaciers. Ann Glaciol 33(1):474–480

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in velocity structure of the Greenland ice sheet. Science 311:986–990

    Article  Google Scholar 

  • Rignot E, Casassa G, Gognineni P, Krabill W, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697

    Article  Google Scholar 

  • Rignot E, Koppes M, Velinconga I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci 3:187–191

    Article  Google Scholar 

  • Rignot E, Veliconga I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea-level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583

  • Roberts D, Long AJ, Schnabel C, Freeman S, Simpson MJR (2008) The deglacial history of southeast sector of the Greenland ice sheet during the Last Glacial Maximum. Q Sci Rev 27:1505–1516

    Article  Google Scholar 

  • Sandhaeger H (2003) Numerical study on the influence of fractures and zones of weakness on the flow regime of Larsen Ice Shelf. Report 14, FRISP

  • Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670

    Article  Google Scholar 

  • Schoof C (2005) The effect of cavitation on glacier sliding. Proc R Soc Lond Ser A 461:609–627

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: Steady states, stability and hysteresis. J Geophys Res 112:F03S28. doi:10.1029/2006JF000664

  • Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature 468:803–806

    Article  Google Scholar 

  • Schoof C, Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q J Mech Appl Math 63(1):73–114

    Article  Google Scholar 

  • Seddik H, Greve R, Zwinger T, Gagliardini O (2010) Steady-state simulations of the Greenland ice sheet using a three-dimensional full-Stokes model. Geophys Res Abs 12(EGU2010-8644)

    Google Scholar 

  • Sohn HG, Jezek KC, Vander Veen CJ (1998) Jakobshavn glacier, West Greenland: 30 years of spaceborne observations. Geophys Res Lett 25:2699–2702

    Article  Google Scholar 

  • Stearns LA, Hamilton GS (2007) Rapid volume loss from two East Greenland outlet glaciers quantified using repeat strereo satellite imagery. Geophys Res Lett 34:L05503. doi:10.1029/2006GL028982

    Article  Google Scholar 

  • Stone EJ, Lunt DJ, Rutt IC, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417

    Article  Google Scholar 

  • Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in Greenland. Nat Geosci 3:182–186

    Article  Google Scholar 

  • Straneo F, Curry RG, Sutherland DA, Hamilton GS, Cenedese C, Vage K, Stearns LA (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat Geosci 4:322–327

    Article  Google Scholar 

  • Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469:521–524

    Article  Google Scholar 

  • Thoma M, Grosfeld K, Makinson K, Lange MA (2010) Modelling the impact of ocean warming on melting and water masses of ice shelves in the Eastern Weddell Sea. Ocean Dyn 60:479–489

    Article  Google Scholar 

  • Thomas RB (2004) Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J Glaciol 50(168):57–66

    Article  Google Scholar 

  • Thomas RB, Abdalati W, Frederick E, Krabill WB, Manizade S, Steffen K (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland. J Glaciol 49(165):231–239

    Article  Google Scholar 

  • Thomas RB, Frederick E, Krabill W, Manizade S, Martin C (2009) Recent changes on Greenland outlet glaciers. J Glaciol 55(189):147–162

    Article  Google Scholar 

  • Thomas RH (1978) The dynamics of marine ice sheets. J Glaciol 24:167–177

    Google Scholar 

  • Vande Wal RSW, Boot W, Vanden Broeke MR, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemans J (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science 321:111–113

    Article  Google Scholar 

  • Vanden Broeke M, Bamber J, Etterna J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velinconga I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986

    Article  Google Scholar 

  • Vander Veen CJ (1996) Tidewater calving. J Glaciol 42(141):375–385

    Google Scholar 

  • Vander Veen CJ (1998) Fracture mechanics approach to penetration of surface crevasses. Cold Reg Sci Technol 27:31–47

    Article  Google Scholar 

  • Vander Veen CL, Whillans IM (1996) Model experiments on the evolution and stability of ice streams. Ann Glaciol 23:129–137

    Google Scholar 

  • Vieli A, Payne AJ (2005) Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res 110:F01003. doi:10.1029/2004JF000202

  • Vieli A, Funk M, Blatter H (2000) Tidewater glaciers: frontal flow acceleration and basal sliding. Ann Glaciol 31:217–221

    Article  Google Scholar 

  • Vieli A, Funk M, Blatter H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J Glaciol 47(159):595–606

    Article  Google Scholar 

  • Vieli A, Jania J, Kolondra L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen. J Glaciol (in press)

  • Vieli A, Payne AJ, Shepherd A, Du S (2007) Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Plan Res Lett 259(3-4):297–306

    Article  Google Scholar 

  • Weertman J (1973) Can a water-filled crevasse reach the bottom surface of a glacier?. IAHS Pub 95:185–188

    Google Scholar 

  • Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13(67):3–11

    Google Scholar 

  • Young NE, Briner JP, Stewart HAM, Axford Y, Csatho B, Rood DH, Finkel RC (2011) Response of Jakobshavn Isbrae, Greenland, to Holocene climate change. Geology 39(2):131–134

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge M. Luethi for inspiring scientific discussions and G. J.-M. C. Leysinger Vieli and two anonymous reviewers for their useful comments. We further thank I. Joughin for providing the velocity data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vieli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieli, A., Nick, F.M. Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications. Surv Geophys 32, 437–458 (2011). https://doi.org/10.1007/s10712-011-9132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9132-4

Keywords

Navigation