Skip to main content

Advertisement

Log in

Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Traditionally cacao (Theobroma cacao L.) is cultivated under legume shade trees, which produce N-rich litter that improves soil organic matter content, microbial activity, and recycles N to the crop. Arbuscular mycorrhiza forming fungi (AMF) are known to play an important role in plant nutrient uptake, yet their role in plant N uptake from organic residues in tropical agroforestry systems is not clear. We studied root and leaf litter of the legume shade tree Inga edulis Mart. as a source of N for cacao and the importance of AMF colonisation in the uptake of litter N under controlled conditions. Leaf and root litter of I. edulis enriched with 15N was added to cacao pots filled with field soil. Half of the cacao saplings were AMF-inoculated and the soil of non-inoculated saplings was treated with fungicide to suppress AMF. During the 10-week experiment, young cacao leaves were sampled for 15N analyses and at the end of the experiment whole plants were harvested. Microbial populations in the soil were determined using phospholipid fatty acid (PLFA) analysis, and AMF structures in the roots were quantified. Fungicide treatment decreased AMF structures in roots and increased bacterial populations, but did not affect the decomposition rate of either litter type. Inoculated and non-inoculated cacao saplings used 2.6 and 2.1%, respectively, of N added to the pots in leaf litter and 12.1 and 7.1% of N available in root litter indicating that root litter of I. edulis may be a more efficient N source than leaf litter for cacao. Although the fungicide treatment did not completely suppress AMF in non-inoculated pots, it created sufficient contrast in root AMF colonisation for concluding that AMF significantly enhanced cacao N use from both litter types. The role of root litter of shade trees as a N source in agroforestry should not be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander IJ (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, UK, pp 169–188

    Google Scholar 

  • Almeida AAF, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19(4):425–448. doi:10.1590/S1677-04202007000400011

    Article  Google Scholar 

  • Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14(4):221–228. doi:10.1007/s00572-003-0259-0

    Article  PubMed  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38(1–3):139–164. doi:10.1023/A:1005956528316

    Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84. doi:10.1016/j.agee.2006.03.011

    Article  Google Scholar 

  • Chintu R, Zaharah AR (2003) Nitrogen uptake of maize (Zea mays L.) from isotope-labeled biomass of Paraserianthes falcataria grown under controlled conditions. Agrofor Syst 57(2):101–107. doi:10.1023/A:1023940602481

    Article  Google Scholar 

  • Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol Fert Soils 15(4):253–258. doi:10.1007/BF00337209

    Article  Google Scholar 

  • Chulan HA, Ragu P (1986) Growth response of Theobroma cacao L. seedlings to inoculation with vesicular-arbuscular mycorrhizal fungi. Plant Soil 96(2):279–285. doi:10.1007/BF02374771

    Article  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17(5):375–393. doi:10.1007/s00572-007-0130-9

    Article  PubMed  CAS  Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129. doi:10.1023/A:1026387711571

    Article  Google Scholar 

  • FAOStat (2011) http://www.fao.org/corp/statistics/en/. Accessed 29 July 2011

  • Federle TW (1986) Microbial distribution in soil -new techniques. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 493–498

    Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev. doi:10.1016/j.fbr.2011.01.002

    Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22(1–2):59–65. doi:10.1007/BF00384433

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59(11):3605–3617

    PubMed  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28(1):55–63. doi:10.1016/0038-0717(95)00100-X

    Article  Google Scholar 

  • Gobert A, Plassard C (2008) The beneficial effect of mycorrhizae on N utilization by the host-plant: myth or reality? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 209–240. doi: 10.1007/978-3-540-78826-3_11

  • Gómez Luciano CA (2008) Distribución de raicés finas de Inga edulis y Theobroma cacao en el suelo de un sistema agroforestal orgánico. Proyecto de graduación. Universidad EARTH, Costa Rica

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi:10.1038/nature03610

    Article  PubMed  CAS  Google Scholar 

  • Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics in tropical agroforestry and annual cropping systems. Soil Biol Biochem 25(10):1363–1378. doi:10.1016/0038-0717(93)90051-C

    Article  CAS  Google Scholar 

  • Hands MR (1998) The use of Inga in the acid soils of the rainforest zone: Alley-cropping sustainability and soil-regeneration. In: Pennington TD, Fernandez ECM (eds) The genus Inga utilization. The Royal Botanic Gardens Kew, London, pp 53–86

    Google Scholar 

  • He X, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22(6):531–567. doi:10.1080/713608315

    Article  Google Scholar 

  • Hodge A (2003) N capture by Plantago lanceolata and Brassica napus from organic matter: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 54(391):2331–2342. doi:10.1093/jxb/erg249

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Campbell D, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. doi:10.1038/35095041

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554. doi:10.1016/j.tree.2006.06.004

    Article  PubMed  Google Scholar 

  • Iglesias L, Salas E, Leblanc HA, Nygren P (2011) Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi. Agrofor Syst 83(1):63–73. doi:10/1007/s10457-011-9400-9

    Article  Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32(10):1366–1376. doi:10.1111/j.1365-3040.2009.02004.x

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30(3):310–322. doi:10.1111/j.1365-3040.2006.01617.x

    Article  PubMed  CAS  Google Scholar 

  • Kahiluoto H, Vestberg M (2000) Creation of a non-mycorrhizal control for a bioassay of AM effectiveness 2. Benomyl application and soil sampling time. Mycorrhiza 9(5):259–270. doi:10.1007/PL00009990

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Creation of a non-mycorrhizal control for bioassay of AM effectiveness 1. Comparison of methods. Mycorrhiza 9:241–258. doi:10.1007/PL00009989

    Article  Google Scholar 

  • Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785. doi:10.1016/S0038-0717(96)00269-6

    Article  CAS  Google Scholar 

  • Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113

    Article  Google Scholar 

  • Leblanc HA, Nygren P, McGraw R (2006) Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practise in the humid tropics. Soil Biol Biochem 38(2):349–358. doi:10.1016/j.soilbio.2005.05.012

    Article  CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181(1):199–207. doi:10.1111/j.1469-8137.2008.02630.x

    Article  PubMed  CAS  Google Scholar 

  • León J (1998) Inga as shade tree for coffee, cacao and tea: historical aspects and present day utilization. In: Pennington TD, Fernandez ECM (eds) The genus Inga utilization. The Royal Botanic Gardens Kew, London, pp 53–86

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fert Soils 44(4):653–659. doi:10.1007/s00374-007-0261-3

    Article  Google Scholar 

  • Muñoz F, Beer J (2001) Fine root dynamics of shaded cacao plantations in Costa Rica. Agrofor Sys 51:119–130. doi:10.1023/A:1010651203815

    Article  Google Scholar 

  • Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: Myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, pp 1–31

    Google Scholar 

  • Nichols PD, Stulp BK, Jones JG, White DC (1986) Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Arch Microbiol 146:1–6

    Article  CAS  Google Scholar 

  • Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Commonwealth Bureau of Soils, Harpenden

    Google Scholar 

  • Nygren P, Leblanc H (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76(2):303–315. doi:10.1007/s10457-008-9160-3

    Article  Google Scholar 

  • Olsson PA (1999) Mini review: signature fatty acids provide toosl for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99(5):623–629. doi:10.1016/S0953-7562(09)80723-5

    Article  CAS  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microb 63(9):3531–3538

    CAS  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83(1–2):27–42. doi:10.1016/S0167-8809(00)00267-X

    Article  Google Scholar 

  • Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb Ecol 38(2):168–179. doi:10.1007/s002489900161

    Article  PubMed  Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257. doi:10.1007/s00442-003-1334-0

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Reynolds L, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167(3):869–880. doi:10.1111/j.1469-8137.2005.01455.x

    Article  PubMed  CAS  Google Scholar 

  • Sancho F, Mata R, Molina E, Salas R (1989) Estudio de suelos, finca de la Escuela de Agricultura de la Región Tropical Húmeda, Guácimo, Provincia de Limón. Universidad EARTH, Guácimo, p 151

    Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13(6):699–756. doi:10.1071/PP9860699

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Vanlauwe B, Swift MJ, Merckx R (1996) Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (De Witt)) alley cropping system in Southwestern Nigeria. Soil Biol Biochem 28(6):739–749. doi:10.1016/0038-0717(95)00187-5

    Article  CAS  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  • World cocoa Foundation (2010) Cocoa Market Update (May 2010). http://www.worldcocoafoundation.org/learn-about-cocoa/cocoa-market.html. Accessed 12 Aug 2011

  • Zamora VN, Pennington TD (2001) Guabas y Cuajiniquiles de Costa Rica (Inga spp.). Instituto Nacional de Biodiversidad, Heredia

    Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper no. 89. World Agroforestry Centre, Nairobi

Download references

Acknowledgments

We thank Ms Riina Jalonen for assistance in designing and setting up the experiment, Mr Ricardo Palacios for logistics with the greenhouse work, Dr. Hannu Fritze for help with the PLFA analyses, and Ms Pirjo Kähkölä for language corrections. The study was funded by the Academy of Finland (grant 129166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Nygren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kähkölä, AK., Nygren, P., Leblanc, H.A. et al. Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutr Cycl Agroecosyst 92, 51–65 (2012). https://doi.org/10.1007/s10705-011-9471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-011-9471-z

Keywords

Navigation