Skip to main content
Log in

Effect of dietary oxidized konjac glucomannan on Schizothorax prenanti growth performance, body composition, intestinal morphology and intestinal microflora

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Absrtact

The aim of the present study was to examine the effect of oxidized konjac glucomannan (OKGM) on Schizothorax prenanti growth performance, body composition, intestinal morphology and intestinal microflora. Fish were fed a basal diet or basal diet plus 4.0, 8.0, 16.0 and 32.0 g kg−1 OKGM for 60 days. The results indicated that WGR and SGR were significantly higher in fish fed 8.0 and 16.0 g kg−1 OKGM diets (P < 0.05) than those in fish fed basal diet, and PER was significantly higher and FCR was significantly lower in fish fed 16.0 g kg−1 OKGM diet (P < 0.05). The content of body protein, lipid and moisture was affected by the OKGM diets. The light and electron microscopy demonstrated that intestinal morphology of fish fed 8.0 and 16.0 g kg−1 OKGM diet was better (P < 0.05) than the control group, including mucosa fold height, mucosal epithelial height, submucosa height, longitudinal muscularis thickness and circular muscularis thickness. Compared with the control group, fish fed 32.0 g kg−1 OKGM diet showed significantly lower goblet cell number in anterior intestine (P < 0.05). Furthermore, intestinal microflora was analyzed by PCR-DGGE, and the results showed that OKGM diets also significantly modulated the intestinal microflora of fish (P < 0.05). The study clearly demonstrates that OKGM could enhance the growth performance, improve intestinal morphology and modulate intestinal microflora of S. prenanti, and the optimal dietary OKGM levels was suggested to be 16.0 g kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Ghazzewi FH, Khanna S, Tester RF et al (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766

    Article  CAS  Google Scholar 

  • AOAC (1996) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington, VA

  • Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol 34:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Sheu WH, Tai TS, Liaw YP, Chen YC (2003) Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subjects-a randomized double-blind trial. J Am Coll Nutr 22:36–42

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Fan YH, Chen Chan Y (2005) Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition 21:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Choct M, Hughes RJ, Wang J, Bedford MR, Morgan AJ, Annison G (1996) Increased small intestinal fermentation is partly responsible for the antinutritive activity of non-starch polysaccharides in chickens. Br Poult Sci 37:609–921

    Article  CAS  PubMed  Google Scholar 

  • Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2:219–224

    Article  CAS  Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304:49–57

    Article  CAS  Google Scholar 

  • De Lange CFM (2000) Characterisation of the non-starch polysaccharides. In: Moughan PJ, Verstegen MWA, Visser-Reyneveld MI (eds) Feed evaluation principles and practice. Wageningen Pers, Wageningen, pp 77–92

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J Anim Sci 87:3226–3234

    Article  CAS  PubMed  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moated R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188

    Article  CAS  Google Scholar 

  • Farhangi M, Carter CG, Hardy RW (2001) Growth, physiological and immunological responses of rainbow trout (Oncorhynchus mykiss) to different dietary inclusion levels of dehulled lupin (Lupinus angustifolius). Aquac Res 32:329–340

    Article  Google Scholar 

  • Genc MA, Aktas M, Genc E, Yilmaz E (2007a) Effects of dietary mannan oligosaccharide on growth, body composition and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquac Nutr 13:156–161

    Article  CAS  Google Scholar 

  • Genc MA, Yilmaz E, Genc E et al (2007b) Effects of dietary mannan oligosaccharides (MOS) on growth, body composition and intestine and liver histology of the hybrid tilapia (Oreochromis niloticus × O. aureus). Isr J Aquac 59:10–16

    Google Scholar 

  • Grisdale-Helland B, Helland SJ, Gatlin DM III (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167

    Article  CAS  Google Scholar 

  • He M, Zhang Y, Fang J (2010) Quantitative histomorphometric observation of the digestive of Schisothorax (pacoma) davidi (sauvage). J Shandong Agric Univ 41:229–233

    Google Scholar 

  • Hossain MA, Focken U, Becke K (2001) Galactomannan-rich endosperm of Sesbania (Sesbania aculeata) seeds responsible for retardation of growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 203:121–132

    Article  CAS  Google Scholar 

  • Ito H, Satsukawa M, Arai E, Sugiyama K, Sonoyama K, Kiriyama S, Morita T (2009) Soluble fiber viscosity affects both goblet cell number and small intestine mucin secretion in rats. J Nutr 139:1640–1647

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Zhao XQ, Theil PK et al (2003) Energy metabolism and protein balance in growing rats fed different levels of dietary fibre and protein. Arch Anim Nutr 57:83–98

    Article  Google Scholar 

  • Keithley J, Swanson B (2005) Glucomannan and obesity: a critical review. Altern Ther Health Med 11:30–34

    PubMed  Google Scholar 

  • Leenhouwers JI, Adjei BD, Verreth JAJ, Schrama JW (2006) Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide. Aquac Nutr 12:111–116

    Article  CAS  Google Scholar 

  • Leenhouwers JI, Ter VM, Verreth JAJ, Schrama JW (2007) Digesta characteristics and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture 264:330–341

    Article  Google Scholar 

  • Liu A, Leng X, Li X, Wang L, Wan H (2009) Effect of mannan oligosaccharides on growth performance, intestinal structure and nonspecific immunity of tilapia, Oreochromis niloticus × O. aureus. J Zhejiang Univ Agric Life Sci 35:329–336 (in Chinese)

    CAS  Google Scholar 

  • Mansour MR, Akrami R, Ghobadi SH, Denji KA, Ezatrahimi N, Gharaei A (2012) Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol Biochem 38:829–835

    Article  Google Scholar 

  • Mowry RW (1963) The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of Alcian blue G8x and their combinations with the periodic acid Schiff reaction. Ann NY Acad Sci 106:402–423

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  CAS  Google Scholar 

  • Ohya Y, Ihara K, Murata J, Sugitou T, Ouchi T (1994) Preparation and biological properties of dicarboxy-glucomannan: enzymatic degradation and stimulating activity against cultured macrophages. Carbohydr Polym 25:123–130

    Article  CAS  Google Scholar 

  • Onishi N, Kawamoto S, Nishimura M, Nakano T et al (2005) A new immunomodulatory function of low-viscous konjac glucomannan with a small particle size: its oral intake suppresses spontaneously occurring dermatitis in NC/Nga mice. Int Arch Allergy Immunol 136:258–265

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2013) Effects of inactivated enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity and disease protection in Rainbow Trout. N Am J Aquac 75:416–428

    Article  Google Scholar 

  • Salze G, McLean E, Schwarz MH, Craig SR (2008) Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture 274:148–152

    Article  CAS  Google Scholar 

  • Sang HM, Fotedar R (2010) Effects of mannan oligosaccharide dietary supplementation on performances of the tropical spiny lobsters juvenile (Panulirus ornatus, Fabricius 1798). Fish Shellfish Immunol 28:483–489

    Article  CAS  PubMed  Google Scholar 

  • Schwarz KK, Furuya WM, Natali MRM et al (2010) Mannanoligosaccharides in diets for Nile tilapia, juveniles. Acta Sci Anim Sci 32:197–203

    Article  CAS  Google Scholar 

  • Sood N, Baker WL, Coleman CI (2008) Effect of glucomannan on plasma lipid and glucose concentrations, body weight and blood pressure: systemic review and meta-analysis. Am J Clin Nutr 88:1167–1175

    CAS  PubMed  Google Scholar 

  • Staykov Y, Spring P, Denev S, Sweetman J (2007) Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquacult Int 15:153–161

    Article  CAS  Google Scholar 

  • Teitelbaum JE, Walker WA (2002) Nutritional impact of pre- and probiotics as protective gastrointestinal organisms. Annu Rev Nutr 22:107–138

  • Torrecillas S, Makol A, Benítez-Santana T, Caballero MJ, Montero D, Sweetman J, Izquierdo M (2011) Reduced gut bacterial translocation in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Fish Shellfish Immunol 30:674–681

    Article  CAS  PubMed  Google Scholar 

  • Vuksan V, Sievenpiper JL, Xu Z, Wong EYY, Jenkins AL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Stavro MP (2001) Konjac-mannan and American ginsing: emerging alternatives therapies for type 2 diabetes mellitus. J Am Coll Nutr 20:370–380

    Article  Google Scholar 

  • Wang W, Wu Y (2013) Effect of oxidized konjac glucomannan on duodenal morphology and intestinal flora of C57BL/6J mice fed with high-fat diet. Food Sci 19:066

    Google Scholar 

  • Wu Z, Yu Y, Chen X, Liu H, Yuan J, Shi Y, Chen X (2014) Effect of prebiotic konjac mannanoligosaccharide on growth performances, intestinal microflora, and digestive enzyme activities in yellow catfish, Pelteobagrus fulvidraco. Fish Physiol Biochem 40:763–771

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Qiu-Zhou X (2006) Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 256:389–394

    Article  CAS  Google Scholar 

  • Yeh SL, Lin MS, Chen HL (2010) Partial hydrolysis enhances the inhibitory effects of konjac glucomannan from Amorphophallus konjac C. Koch on DNA damage induced by fecal water in Caco-2 cells. Food Chem 119:614–618

    Article  CAS  Google Scholar 

  • Yilmaz E, Genc MA, Genc E (2007) Effects of dietary mannan oligosaccharides on growth, body composition, and intestine and liver histology of rainbow trout, Oncorhynchus mykiss. Isr J Aquac Bamidgeh 59:182–188

    Google Scholar 

  • Zhang J, Liu Y, Tian L, Yang H, Liang G, Xu D (2012) Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu Y, Wang L, Wang H (2013) Effects of oxidized konjac glucomannan (OKGM) on growth and immune function of Schizothorax prenanti. Fish Shellfish Immunol 35:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Liu H, Yan J et al (2012) Effect of yeast polysaccharide on some hematologic parameter and gut morphology in channel catfish (Ictalurus punctatus). Fish Physiol Biochem 38:1441–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Wu, Y. & Xu, H. Effect of dietary oxidized konjac glucomannan on Schizothorax prenanti growth performance, body composition, intestinal morphology and intestinal microflora. Fish Physiol Biochem 41, 733–743 (2015). https://doi.org/10.1007/s10695-015-0042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0042-0

Keywords

Navigation