Skip to main content

Advertisement

Log in

Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Environmental estrogen could mimic natural estrogens thereby disrupting the endocrine systems of human and animals. The actions of such endocrine disruptors have been studied mainly on reproduction and development. However, estrogen could also affect the somatotropic axis via multiple targets such as growth hormone (GH). In the present study, two endocrine disruptors were chosen to investigate their effects on the expression level and signal transduction of growth hormone receptor (GHR) in fish. Using real-time PCR, it was found that exposure to both the estrogenic (bisphenol A) and anti-estrogenic (malachite green) compounds could attenuate the expression levels of GHR1 and GHR2 in black seabream (Acanthopagrus schlegeli) hepatocytes. The expression level of IGF-I, the downstream effector of GHR activation in the liver, was decreased by bisphenol A but not by malachite green. Luciferase reporter assay of the β-casein promoter was used to monitor GHR signaling in transfected cells. In the fish liver cell line Hepa-T1, both GHR1 and GHR2 signaling were attenuated by bisphenol A and malachite green. This attenuation could only occur in the presence of estrogen receptor, indicating that these agents probably produce their actions via the estrogen receptor. Results of the present study demonstrated that estrogenic or anti-estrogenic compounds could down-regulate the somatotropic axis in fish by affecting both the gene expression and signaling of GHR. In view of the increasing prevalence of these compounds in the environment, the impact on fish growth and development both in the wild and in aquaculture would be considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BPA:

Bisphenol A

ER:

Estrogen receptor

FCS:

Fetal calf serum

gfERα:

Goldfish ER alpha

GH:

Growth hormone

GHR:

Growth hormone receptor

HBSS:

Hank’s buffered salt solution

MG:

Malachite green

PBS:

Phosphate buffered saline

P/S:

Penicillin streptomycin

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

References

  • Bellantoni MF, Vittone J, Campfield AT, Bass KM, Harman SM, Blackman MR (1996) Effects of oral versus transdermal estrogen on the growth hormone/insulin-like growth factor I axis in younger and older postmenopausal women: a clinical research center study. J Clin Endocrinol Metab 81:2848–2853

    Article  PubMed  CAS  Google Scholar 

  • Bergad PL, Shih HM, Towle HC, Schwarzenberg SJ, Berry SA (1995) Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two γ-activated sites. J Biol Chem 270:24903–24910

    Article  PubMed  CAS  Google Scholar 

  • Davis LK, Hiramatsu N, Hiramatsu K, Reading BJ, Matsubara T, Hara A, Sullivan CV, Pierce AL, Hirano T, Grau EG (2007) Induction of three vitellogenins by 17β-estradiol with concurrent inhibition of the growth hormone-insulin-like growth factor 1 axis in a euryhaline teleost, the tilapia (Oreochromis mossambicus). Biol Reprod 77:614–625

    Article  PubMed  CAS  Google Scholar 

  • Doerge DR, Chang HC, Divi RL, Churchwell MI (1998) Mechanism for inhibition of thyroid peroxidase by leucomalachite green. Chem Res Toxicol 11:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Elango A, Shepherd B, Chen TT (2006) Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol 145:116–127

    Article  PubMed  CAS  Google Scholar 

  • Facciolo RM, Alo R, Madeo M, Canonaco M, Dessi-Fulgheri F (2002) Early cerebral activities of the environmental estrogen bisphenol A appear to act via the somatostatin receptor subtype sst(2). Environ Health Perspect 110:397–402

    PubMed  CAS  Google Scholar 

  • Farchi-Pisanty O, Hackett PB Jr, Moav B (1995) Regulation of fish growth hormone transcription. Mol Mar Biol Biotechnol 4:215–223

    PubMed  CAS  Google Scholar 

  • Faulds MH, Pettersson K, Gustafsson JA, Haldosen LA (2001) Cross-talk between ERs and signal transducer and activator of transcription 5 is E2 dependent and involves two functionally separate mechanisms. Mol Endocrinol 15:1929–1940

    Article  PubMed  CAS  Google Scholar 

  • Filby AL, Thorpe KL, Tyler CR (2006) Multiple molecular effect pathways of an environmental oestrogen in fish. J Mol Endocrinol 37:121–134

    Article  PubMed  CAS  Google Scholar 

  • Furuya M, Sasaki F, Hassanin AM, Kuwahara S, Tsukamoto Y (2003) Effects of bisphenol-A on the growth of comb and testes of male chicken. Can J Vet Res 67:68–71

    PubMed  CAS  Google Scholar 

  • Gerland K, Bataille-Simoneau N, Basle M, Fourcin M, Gascan H, Mercier L (2000) Activation of the Jak/Stat signal transduction pathway in GH-treated rat osteoblast-like cells in culture. Mol Cell Endocrinol 168:1–9

    Article  PubMed  CAS  Google Scholar 

  • Gray LE Jr, Kelce WR, Monosson E, Ostby JS, Birnbaum LS (1995) Exposure to TCDD during development permanently alters reproductive function in male Long Evans rats and hamsters: reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. Toxicol Appl Pharmacol 131:108–118

    Article  PubMed  CAS  Google Scholar 

  • Herath CB, Jin W, Watanabe G, Arai K, Suzuki AK, Taya K (2004) Adverse effects of environmental toxicants, octylphenol and bisphenol A, on male reproductive functions in pubertal rats. Endocrine 25:163–172

    Article  PubMed  CAS  Google Scholar 

  • Holloway AC, Leatherland JF (1997) Effect of gonadal steroid hormones on plasma growth hormone concentrations in sexually immature rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 105:246–254

    Article  PubMed  CAS  Google Scholar 

  • Huggard D, Khakoo Z, Kassam G, Habibi HR (1996) Effect of testosterone on growth hormone gene expression in the goldfish pituitary. Can J Physiol Pharmacol 74:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Intorre L, Meucci V, Di Bello D, Monni G, Soldani G, Pretti C (2007) Tolerance of benzalkonium chloride, formalin, malachite green, and potassium permanganate in goldfish and zebrafish. J Am Vet Med Assoc 231:590–595

    Article  PubMed  CAS  Google Scholar 

  • Jiao B, Huang X, Chan CB, Zhang L, Wang D, Cheng CHK (2006) The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream. J Mol Endocrinol 36:23–40

    Article  PubMed  CAS  Google Scholar 

  • Jiao B, Yeung EKC, Chan CB, Cheng CHK (2008) Establishment of a transgenic yeast screening system for estrogenicity and identification of the anti-estrogenic activity of malachite green. J Cell Biochem (in press)

  • Kabuto H, Amakawa M, Shishibori T (2004) Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci 74:2931–2940

    Article  PubMed  CAS  Google Scholar 

  • Kang IJ, Yokota H, Oshima Y, Tsuruda Y, Oe T, Imada N, Tadokoro H, Honjo T (2002) Effects of bisphenol a on the reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 21:2394–2400

    PubMed  CAS  Google Scholar 

  • Katoh K, Matsuda A, Ishigami A, Yonekura S, Ishiwata H, Chen C, Obara Y (2004) Suppressing effects of bisphenol A on the secretory function of ovine anterior pituitary cells. Cell Biol Int 28:463–469

    Article  PubMed  CAS  Google Scholar 

  • Klotz DM, Hewitt SC, Korach KS, Diaugustine RP (2000) Activation of a uterine insulin-like growth factor I signaling pathway by clinical and environmental estrogens: requirement of estrogen receptor-α. Endocrinology 141:3430–3439

    Article  PubMed  CAS  Google Scholar 

  • Labadie P, Budzinski H (2006) Alteration of steroid hormone balance in juvenile turbot (Psetta maxima) exposed to nonylphenol, bisphenol A, tetrabromodiphenyl ether 47, diallylphthalate, oil, and oil spiked with alkylphenols. Arch Environ Contam Toxicol 50:552–561

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Lee KW, Kwak EJ, Yang SW, Yang KS, Park JC, Joo HS, Lee WJ, Lee WB (2003) Effects of environmental endocrine disruptors on the sex differentiation in Korean rockfish, Sebastes schlegeli. Water Sci Technol 47:65–70

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mandich A, Bottero S, Benfenati E, Cevasco A, Erratico C, Maggioni S, Massari A, Pedemonte F, Viganò L (2007) In vivo exposure of carp to graded concentrations of bisphenol A. Gen Comp Endocrinol 153:15–24

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2003) Estrogen agonists/antagonists may down-regulate growth hormone signaling in hepatocytes–an explanation for their impact on IGF-I, IGFBP-1, and lipoprotein(a). Med Hypotheses 61:335–339

    Article  PubMed  CAS  Google Scholar 

  • Melamed P, Rosenfeld H, Elizur A, Yaron Z (1998) Endocrine regulation of gonadotropin and growth hormone gene transcription in fish. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119:325–338

    Article  PubMed  CAS  Google Scholar 

  • Nunez AA, Kannan K, Giesy JP, Fang J, Clemens LG. (2001) Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 42:917–922

    Article  PubMed  CAS  Google Scholar 

  • Oleksik AM, Duong T, Pliester N, Asma G, Popp-Snijders C, Lips P (2001) Effects of the selective estrogen receptor modulator, raloxifene, on the somatotropic axis and insulin-glucose homeostasis. J Clin Endocrinol Metab 86:2763–2768

    Article  PubMed  CAS  Google Scholar 

  • Onuma T, Ando H, Koide N, Okada H, Urano A (2005) Effects of salmon GnRH and sex steroid hormones on expression of genes encoding growth hormone/prolactin/somatolactin family hormones and a pituitary-specific transcription factor in masu salmon pituitary cells in vitro. Gen Comp Endocrinol 143:129–141

    Article  PubMed  CAS  Google Scholar 

  • Oono H, Hatai K, Miura M, Tuchida N, Kiryu T (2007) The use of bronopol to control fungal infection in rainbow trout eggs. Biocontrol Sci 12:55–57

    PubMed  CAS  Google Scholar 

  • Ramakrishnan S, Wayne NL (2008) Impact of bisphenol-A on early embryonic development and reproductive maturation. Reprod Toxicol 25:177–183

    Article  PubMed  CAS  Google Scholar 

  • Rhind SM (2002) Endocrine disrupting compounds and farm animals: their properties, actions and routes of exposure. Domest Anim Endocrinol 23:179–187

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–651

    Article  PubMed  CAS  Google Scholar 

  • Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schafers C, Vandenbergh F, Watts M, Wenzel A (2003) Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54:302–314

    Article  PubMed  CAS  Google Scholar 

  • Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19:2638–2644

    Article  PubMed  CAS  Google Scholar 

  • Smeets JM, van Holsteijn I, Giesy JP, van den Berg M (1999) The anti-estrogenicity of Ah receptor agonists in carp (Cyprinus carpio) hepatocytes. Toxicol Sci 52:178–188

    Article  PubMed  CAS  Google Scholar 

  • Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C (1997) Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic binding activity of Stat5A and Stat5B. Endocrinology 138:3426–3434

    Article  PubMed  CAS  Google Scholar 

  • Sohoni P, Tyler CR, Hurd K, Caunter J, Hetheridge M, Williams T, Woods C, Evans M, Toy R, Gargas M, Sumpter JP (2001) Reproductive effects of long-term exposure to bisphenol A in the fathead minnow (Pimephales promelas). Environ Sci Technol 35:2917–2925

    Article  PubMed  CAS  Google Scholar 

  • Sotiropoulos A, Moutoussamy S, Renaudie F, Clauss M, Kayser C, Gouilleux F, Kelly PA, Finidori J (1996) Differential activation of Stat3 and Stat5 by distinct regions of the growth hormone receptor. Mol Endocrinol 10:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aqua Toxicol 66:319–329

    Article  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi T, Yokomori N, Korach KS, Negishi M (1999) Developmental action of estrogen receptor-α feminizes the growth hormone-Stat5b pathway and expression of Cyp2a4 and Cyp2d9 genes in mouse liver. Mol Pharmacol 56:473–477

    PubMed  CAS  Google Scholar 

  • Suzuki N, Hattori A (2003) Bisphenol A suppresses osteoclastic and osteoblastic activities in the cultured scales of goldfish. Life Sci 73:2237–2247

    Article  PubMed  CAS  Google Scholar 

  • Sweeney T (2002) Is exposure to endocrine disrupting compounds during fetal/natal development affecting the reproductive potential of farm animals? Domest Anim Endocrinol 23:203–209

    Article  PubMed  CAS  Google Scholar 

  • Tse DL, Tse MC, Chan CB, Deng L, Zhang WM, Lin HR, Cheng CHK (2003) Seabream growth hormone receptor: molecular cloning and functional studies of the full-length cDNA, and tissue expression of two alternatively spliced forms. Biochim Biophys Acta 1625:64–76

    PubMed  CAS  Google Scholar 

  • Tulipano G, Bonfanti C, Poiesi C, Burattin A, Turazzi S, Barone G, Cozzi R, Bollati A, Valle D, Giustina A (2004) Effects of the selective estrogen receptor modulator LY117018 on growth hormone secretion: in vitro studies. Metabolism 53:563–570

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cheng CHK (2004) ERα and STAT5a cross-talk: interaction through C-terminal portions of the proteins decreases STAT5a phosphorylation, nuclear translocation and DNA-binding. FEBS Lett 572:238–244

    Article  PubMed  CAS  Google Scholar 

  • Zou JJ, Trudeau VL, Cui Z, Brechin J, Mackenzie K, Zhu Z, Houlihan DF, Peter RE (1997) Estradiol stimulates growth hormone production in female goldfish. Gen Comp Endocrinol 106:102–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank The Chinese University of Hong Kong for the provision of Direct Grants (to C.H.K.C.) and Graduate Studentship (to B.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. K. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, B., Cheng, C.H.K. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream. Fish Physiol Biochem 36, 251–261 (2010). https://doi.org/10.1007/s10695-008-9227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9227-0

Keywords

Navigation