Skip to main content
Log in

Molecular mechanisms underlying sex change in hermaphroditic groupers

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Groupers are widely distributed throughout the tropical and subtropical waters of the world and are regarded as a favourite marine food fish. However, their large-scale aquaculture has been hindered by the rarity of natural males. Being protogynous hermaphrodites, groupers have been considered as study model for development and reproduction, especially for sex determination or sex differentiation, owing to the advantage that grouper gonad development undergoes transition from ovary to intersexual gonad and then to testis, and primordial germ cells and different stages of gametic cells during oogenesis and spermatogenesis are synchronously observed in the transitional gonads. Recently, a series of genes related to the reproduction regulation or sex differentiation have been identified in the groupers, mainly by researchers in China. One important finding was that the grouper gene, doublesex/male abnormal 3-related transcription factor 1 (DMRT1), is not only differentially expressed in gonads at different stages, but that it is also restricted to specific stages and specific cells of spermatogenesis. Grouper DMRT1 protein exists only in spermatogonia, primary spermatocytes and secondary spermatocytes, but not in the supporting Sertoli cells. Moreover, no introns were found in the grouper DMRT1, and no duplicated DMRT1 genes were detected. The finding implies that the intronless DMRT1 that is able to undergo rapid transcriptional turnover might be a significant gene for stimulating spermatogenesis in the protogynous hermaphroditic gonad. Additionally, we have found that grouper expression of sex-determining region Y-related high-mobility group-box gene 3 (SOX3) is a significant time point for enterable gametogenesis of primordial germ cells, because SOX3 is obviously expressed and localized in primordial germ cells. As SOX3 continues to express, the SOX3-positive primordial germ cells develop toward oogonia and then oocytes, whereas, when SOX3 expression is ceased, the SOX3-positive primordial germ cells develop toward spermatogonia. Therefore, we suggest that SOX3, as a transcription factor, might have more important roles in oogenesis than in spermatogenesis. Based on the findings, a hypothetic molecular mechanism underlying sex change is proposed in the hermaphroditic groupers, and some candidate genes related to the grouper sex change are also suggested for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

11-KT:

11-Keto-testosterone

AMH:

Anti-mullerian hormone

CN:

Chromatin nucleolus stage

DMRT1:

dsx and mab-3 related transcription factor 1

DMY:

The DM-domain gene on the Y chromosome

E2:

Oestradiol-17β

EcDmrt1 :

Epinephelus coioides dsx and mab-3 related transcription factor 1

EcSOX3 :

Epinephelus coioides Sry-related HMG-box gene 3

EcTSHβ :

Epinephelus coioides Thyroid-stimulating hormone β subunit

FOG2:

Friend of GATA

FSHβ:

Follicle-stimulating hormone β subunit

FTZ-F1 :

Fushi Tarazu factor-1

GATA4:

The zinc finger transcription factors GATA binding proteins 4

GH:

Growth hormone

GnRH-R1:

Gonadotropin-releasing hormone receptor

GTHα:

Gonadotropin α subunit

LHβ:

Luteinizing hormone β subunit

LV:

Lipid vesicle stage

MBP:

Myelin basic protein

MT:

17α-Methyltestosterone

NLTm:

Medial part of the lateral tuberal nucleus

NPOpc:

Parvocellular part of the parvocellular preoptic nucleus

NPY :

Neuropeptide Y

O:

Oogonia

OC2:

Ovary-specific C2 domain factor

P450arom:

Aromatase cytochrome P450

PACAP:

Pituitary adenylate cyclase activating polypeptide

PGC:

Primordial germ cells

PN:

Perinucleolus stage

POF:

Post-ovulatory follicle

PRL:

Prolactin

PVO:

Previtellogenic oocytes

RT-PCR:

Reverse transcription-polymerase chain reaction

SL:

Somatolactin

SMART:

Switching mechanism At 5′end of the RNA transcript

SPC I:

Spermatocytes I

SPC II:

Spermatocytes II

SPD:

Spermatids

SPG:

Spermatogonia

SPZ:

Spermatozoa

Sox3:

Sry-related HMG-box gene 3

T:

Testosterone

TL:

Total length

TP:

Testosterone propionate

TSHβ:

Thyroid-stimulating hormone β subunit

VO:

Vitellogenic oocyte

WT1:

Wilms tumor gene 1

YI:

Yolk granules I

YII:

Yolk granules II

YIII:

Yolk granules III

References

  • Alam MA, Komuro H, Bhandari RK, Nakamura S, Soyano K, Nakamura M (2005) Immunohistochemical evidence identifying the site of androgen production in the ovary of the protogynous grouper Epinephelus merra. Cell Tissue Res 320:323–329

    Article  PubMed  CAS  Google Scholar 

  • Alam MA, Bhandari RK, Kobayashi Y, Nakamura S, Soyano K, Nakamura M (2006) Changes in androgen-producing cell size and circulating 11-ketotestosterone level during female-male sex change of honeycomb grouper Epinephelus merra. Mol Reprod Dev 73:206–214

    Article  PubMed  CAS  Google Scholar 

  • Baroiller JF, Guiguen Y, Iseki K, Fostier A (1998) Physiological role of androgens on gonadal sex differentiation in two teleost fish, Oncorhynchus mykiss and Oreochromis niloticus. J Exp Zool 281:506–507

    Article  Google Scholar 

  • Bhandari RK, Komuro H, Nakamura S, Higa M, Nakamura M (2003) Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper, Epinephelus merra. Zool Sci 20:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Bhandari RK, Higa M, Nakamura S, Nakamura M (2004a) Aromatase inhibitor induces complete sex change in a protogynous honeycomb grouper, Epinephelus merra. Mol Reprod Dev 67:303–307

    Article  PubMed  CAS  Google Scholar 

  • Bhandari RK, Komuro H, Higa M, Nakamura M (2004b) Sex inversion of sexually immature honeycomb grouper (Epinephelus merra) by aromatase inhibitor. Zool Sci 21:305–310

    Article  PubMed  CAS  Google Scholar 

  • Bhandari RK, Alam MA, Soyano K, Nakamura S, Soyano K, Nakamura M (2006) Induction of female-to-male sex change in the honeycomb grouper (Epinephelus merra) by 11-ketotestosterone treatments. Zool Sci 23:65–69

    Article  PubMed  CAS  Google Scholar 

  • Bruslé J, Bruslé S (1975) Ovarian and testicular intersexuality in protogynous Mediterranean groupers, Epinephelus aeneus and Epinephelus guaza. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, New York, USA, pp 222–227

    Google Scholar 

  • Bruslé-Sicard S, Debas L, Fourcault B, Fuchs J (1992) Ultrastructural study of sex inversion in a protogynous hermaphrodite, Epinephelus microdon (Teleostei, Serranidae). Reprod Nutr Dev 32:393–406

    Article  PubMed  Google Scholar 

  • Borg B (1994) Androgens in teleost fishes. Comp Biochem Physiol C 109:219–245

    Article  Google Scholar 

  • Cardwell JR, Liley NR (1991) Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. Gen Comp Endocrinol 81:7–20

    Article  PubMed  CAS  Google Scholar 

  • Chao TM, Chow M (1990) Effect of methyltestosterone on gonadal development of Epinephelus tauvina (FORSKAL). Singapore J Prim Ind 18:1–14

    Google Scholar 

  • Chauvet C (1988) Etude de la croissance du mérou Epinephelus guaza des cǒtes tunisiennes. Aquat Living Resour 1:277–288

    Article  Google Scholar 

  • Chen FY, Chow M, Lim R (1977) Artificial spawning and larval rearing of the grouper, Epinephelus tauvina (FORSKAL) in Singapore. Singapore J Prim Ind 5:1–21

    Google Scholar 

  • Chen R, Li W, Lin H (2005) cDNA cloning and mRNA expression of neuropeptide Y in orange spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol, 142:79∼89

    Article  PubMed  CAS  Google Scholar 

  • Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B (2001) Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 231:149–163

    Article  PubMed  CAS  Google Scholar 

  • Choi I, Oh J, Cho BN, Jung YK, Han Kim D, Cho C (2004) Characterization and comparative genomic analysis of intronless Adams with testicular gene expression. Genomics 83:636–646

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Li W, Liu W, Yang K, Pang Y, Haoran L (2007) Production of recombinant orange-spotted grouper (Epinephelus coioides) luteinizing hormone in insect cells by the baculovirus expression system and its biological effect. Biol Reprod 76:74–84

    Article  PubMed  CAS  Google Scholar 

  • di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, Cate RL, Vigier B (1992) A quantitative and interspecific test for biological activity of anti-Mullerian hormone: the fetal ovary aromatase assay. Development 114:721–727

    PubMed  Google Scholar 

  • Fang YQ, Lin QM (1993) Effects of 17α-methyltestosterone on sex reversal in Epinephelus akaara. J Oceanogr Taiwan Strait 12:185–188

    Google Scholar 

  • Fang YQ, Lin QM, Qi X, Hong GY (1992) Effects of 17α-methyltestosterone on sex reversal in Epinephelus akaara. J Fish China 16:172–174

    Google Scholar 

  • Feng SZ, Li WS, Lin HR (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 149:275–284

    Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S, Kowk G, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, Brook J, Schafer AJ (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530

    Article  PubMed  CAS  Google Scholar 

  • Frojdman K, Harley VR, Pelliniemi LJ (2000) Sox9 protein in rat Sertoli cells is age and stage dependent. Histochem Cell Biol 113:31–36

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1998a) Evolution of the mammalian Y chromosome and sex-determining genes. J Exp Zool 281:472–481

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1998b) Interactions between SRY and SOX genes in mammalian sex determination. Bioessays 20:264–269

    Article  PubMed  CAS  Google Scholar 

  • Gorbman A, Dickhoff WW, Vigna SR, Clark NB, Ralph CL (1983) The thyroid gland. In: Gorbman A, Dickhoff WW, Vigna SR, Clark NB, Ralph CL (eds) Comparative endocrinology. Wiley, USA, pp 185–275

    Google Scholar 

  • Guo Y, Cheng H, Huang X, Gao S, Yu H, Zhou R (2005) Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochem Biophys Res Commun 330:950–957

    Article  PubMed  CAS  Google Scholar 

  • He CL, Du JL, Lee YH, Huang YS, Nagahama Y, Chang CF (2003a) Differential messenger RNA transcription of androgen receptor and estrogen receptor in gonad in relation to the sex change in protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 69:455–461

    Article  PubMed  CAS  Google Scholar 

  • He CL, Du JL, Wu GC, Lee YH, Sun LT, Chang CF (2003b) Differential Dmrt1 transcripts in gonads of the protandrous black porgy, Acanthopagrus schlegeli. Cytogenet Genome Res 101:309–313

    Article  PubMed  CAS  Google Scholar 

  • Heemstra PC, Randall JE (1993) Groupers of the world. FAO species catalogue, Rome

  • Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C (2002) Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant 11:499–505

    PubMed  CAS  Google Scholar 

  • Hong WS, Zhang QY, Gong MJ, Lin WX, ShangGuan BM (1994) Masculinization of red grouper (Epinephelus akaara) induced by exogenous hormone. J Oceanogr Taiwan Strait 13:374–380

    Google Scholar 

  • Huang X, Guo Y, Shui Y, Gao S, Yu H, Cheng H, Zhou R (2005) Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol Reprod 73:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SL, Chuang HC, Nan FH, Ruan YH, Kuo CM (2007) Molecular cloning and gene expression of the gonadotropin-releasing hormone receptor in the orange-spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol 147:209–221

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL (1993) Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol 7:852–860

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Shen WH, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8:654–662

    Article  PubMed  CAS  Google Scholar 

  • Ji GD, Zhou L, Wang Y, Xia W, Gui JF (2006) Identification of a novel C2 domain factor in ovaries of orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 143:374–383

    Article  PubMed  CAS  Google Scholar 

  • Jia HB, Zhou L, Wang Y, Li CJ, Gui JF (2004a) cDNA cloning, expression and localization of somatolactin by immunofluorescence histochemistry method in grouper Epinephelus coioides. High Technol Lett 14:76–82

    CAS  Google Scholar 

  • Jia HB, Zhou L, Yao HS, Gui JF (2004b) Molecular cloning and evolutionary implications of growth hormone /prolactin family gene cDNAs in grouper Epinephelus coioides. Zool Res 25:242–248

    CAS  Google Scholar 

  • Jiang Y, Li WS, Xie J, Lin HR (2003) Sequence and expression of a cDNA encoding both pituitary adenylate cyclase activating polypeptide and growth hormone-releasing hormone in grouper (Epinephelus coioides). Acta Biochim Biophys Sin 35:864–872

    PubMed  CAS  Google Scholar 

  • Johnson AK, Thomas P, Wilson RR Jr (1998) Seasonal cycles of gonadal development and plasma sex steroid levels in Epinephelus morio, a protogynous grouper in the eastern Gulf of Mexico. J Fish Biol 52:502–518

    CAS  Google Scholar 

  • Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y (2004) Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518–526

    Article  PubMed  CAS  Google Scholar 

  • Kohn LD, Shimura M, Shimura Y, Hikada A, Giuliani C, Napolitano G, Ohmori M, Laglia G, Saji M (1995) The thyrotropin receptor. Vitam Horm 50:287–384

    Article  PubMed  CAS  Google Scholar 

  • Kroon FJ, Liley NR (2000) The role of steroid hormones in protogynous sex change in the blackeye goby, Coryphopterus nicholsii (Teleostei: Gobiidae). Gen Comp Endocrinol 118:273–283

    Article  PubMed  CAS  Google Scholar 

  • Kuo CM, Ting YY, Yeh SL (1988) Induced sex reversal and spawning of blue-spotted grouper, Epinephelus fario. Aquaculture 74:113–126

    Article  CAS  Google Scholar 

  • Lasala C, Carré-Eusèbe D, Picard JY, Rey R (2004) Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and non-mammalian species. DNA Cell Biol 23:572–585

    PubMed  CAS  Google Scholar 

  • Lei N, Heckert LL (2004) Gata4 regulates testis expression of Dmrt1. Mol Cell Biol 24:377–388

    Article  PubMed  CAS  Google Scholar 

  • Lephart ED (1996) A review of brain aromatase cytochrome P450. Brain Res Rev 22:1–26

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Lam TJ, Tan CH (2000) Corticosteroid biosynthesis in vitro by testes of the grouper (Epinephelus coioides) after 17alpha-methyltestosterone-induced sex inversion. J Exp Zool 287:453–457

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Lam TJ, Tan CH (2002) Increased 21-hydroxylase and shutdown of C17,20 lyase activities in testicular tissues of the grouper (Epinephelus coioides) during 17alpha-methyltestosterone-induced sex inversion. Gen Comp Endocrinol 126:298–309

    Article  PubMed  CAS  Google Scholar 

  • Li GL, Liu XC, Lin HR (2005a) Aromatase inhibitor letrozole induces sex inversion in the protogynous red spotted grouper (Epinephelus akaara). Acta Physiol Sin 57:473–479

    CAS  Google Scholar 

  • Li CJ, Zhou L, Wang Y, Hong YH, Gui JF (2005b) Molecular and expression characterization of three gonadotropin subunits common α, FSHβ and LHβ in groupers. Mol Cell Endocrinol 233:33–46

    Article  PubMed  CAS  Google Scholar 

  • Li WS, Chen A, Wong OL, Lin HR (2005c) Molecular cloning, tissue distribution, and ontogeny of mRNA expression of growth hormone in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 144:78–89

    Article  PubMed  CAS  Google Scholar 

  • Li GL, Liu XC, Lin HR (2006) Effects of 17α-methyltestosterone on sex reversal in red-spotted grouper, Epinephelus akaara. J Fish China 30:145–150

    CAS  Google Scholar 

  • Li CJ, Zhou L, Yao B, Xia W, Li Z, Wang Y, Gui JF (2007a) Differential analysis of expressed sequence tags (EST) from SMART cDNA plasmid libraries of the orange-spotted grouper (Epinephelus coioides) at two different gonadal development stages. Zool Res 28:279285

    Google Scholar 

  • Li Y, Liu XC, Zhang Y, Zhu P, Lin HR (2007b) Molecular cloning, characterization and distribution of two types of growth hormone receptor in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 152:111–122

    Article  PubMed  CAS  Google Scholar 

  • Marino G, Azzurro E, Massari A et al (2001) Reproduction in the dusky grouper from the southern Mediterranean. J Fish Biol 58:909–927

    Article  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  PubMed  CAS  Google Scholar 

  • Miranda LA, Strussmann CA, Somoza GM (2001) Immunocytochemical identification of GtH1 and GtH2 cells during the temperature-sensitive period for sex determination in pejerrey, Odontesthes bonariensis. Gen Comp Endocrinol 124:45–52

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Yamauchi K, Takahashi H, Nagahama Y (1991) Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc Natl Acad Sci U S A 88:5774–5778

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Miura C, Konda Y, Yamauchi K (2002) Spermatogenesis-preventing substance in Japanese eel. Development 129:2689–2697

    PubMed  CAS  Google Scholar 

  • Moe M (1969) Biology of the red grouper Epinephelus morio from the eastern Gulf of Mexico. Professional Papers Series, Florida Department of Natural Resources Marine Research Laboratory 10:1–95

  • Nagayama Y, Rapoport B (1992) The thyrotropin receptor 25 years after its discovery: new insights after its molecular cloning. Mol Endocrinol 6:145–156

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Hourigan TF, Yamauchi K, Nagahama Y, Grau GE (1989) Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasse Thalassoma duperrey. Environ Biol Fish 24:117–136

    Article  Google Scholar 

  • Negri-Cesi P, Poletti A, Celotti F (1996) Metabolism of steroids in the brain: a new insight into the role of 5alpha-reductase and aromatase in brain differentiation and functions. J Steroid Biochem Mol Biol 58:455–466

    Article  PubMed  CAS  Google Scholar 

  • Pask AJ, Harry JL, Renfree MB, Marshall Graves JA (2000) Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination. Genesis 27:145–152

    Article  PubMed  CAS  Google Scholar 

  • Raverot G, Weiss J, Park SY, Hurley L, Jameson JL (2005) Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283:215–225

    Article  PubMed  CAS  Google Scholar 

  • Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R (2004) SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 363:247–255

    Article  CAS  Google Scholar 

  • Rodriguez-Mari A, Yan YL, Bremiller RA, Wilson C, Canestro C, Postlethwait JH (2005) Characterization and expression pattern of zebrafish anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5:655–667

    Article  PubMed  CAS  Google Scholar 

  • Sadovy Y, Colin PL (1995) Sexual development and sexuality in the Nassau grouper. J Fish Biol 46:961–976

    Article  Google Scholar 

  • Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J (1995) Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A 92:10939–10943

    Article  PubMed  CAS  Google Scholar 

  • Sarter K, Papadaki M, Zanuy S, Mylonas CC (2006) Permanent sex inversion in 1-year-old juveniles of the protogynous dusky grouper (Epinephelus marginatus) using controlled-release 17α-methyltestosterone implants. Aquaculture 256:443–456

    Article  CAS  Google Scholar 

  • Scott FJ (2003) Development biology. Sinauer Associates (Chap 19–7)

  • Shu H, Zhang Y, Liu XC, Li GL, Lin HR (2006) Effects of ADSD implantation on endocrine and gonadal development in red-spotted grouper Epinephelus akaara. Acta Zool Sin 52:316–327

    CAS  Google Scholar 

  • Siggers P, Smith L, Greenfield A (2002) Sexually dimorphic expression of Gata-2 during mouse gonad development. Mech Dev 111:159–162

    Article  PubMed  CAS  Google Scholar 

  • Smith CL (1965) The pattern of sexuality and the classification of serranid fishes. Am Mus Novit 2207:1–20

    Google Scholar 

  • Song JL, Wessel GM (2005) How to make an egg: transcriptional regulation in oocytes. Differentiation 73:1–17

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN (1993) SOX3 is an X-linked gene related to SRY. Hum Mol Genet 2:2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Tan SM, Tan KS (1974) Biology of the tropical grouper. Epinephelus tauvina (Forskal) I. A preliminary study on hermaphroditism in E. tauvina. Sing J Prim Ind 2:123–133

    Google Scholar 

  • Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129:4627–4634

    PubMed  CAS  Google Scholar 

  • Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611

    PubMed  CAS  Google Scholar 

  • Vassart G, Parma J, Van Sande J, Dumont JE (1994) The thyrotropin receptor and the regulation of thyrocyte function and growth. In: Braverman LE, Refetoff S (eds) Endocrine reviews monographs. The Endocrine Society, Rockville, MD, 3:77–80

  • von Hofsten J, Olsson PE (2005) Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3:63

    Article  CAS  Google Scholar 

  • von Hofsten J, Larsson A, Olsson PE (2005) Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233:595–604

    Article  CAS  Google Scholar 

  • Wang Y, Zhou L, Yao B, Li CJ, Gui JF (2004) Differential expression of thyroid-stimulating hormone beta subunit in gonads during sex reversal of orange-spotted and red-spotted groupers. Mol Cell Endocrinol 220:77–88

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhou L, Li Z, Gui JF (2008) Molecular cloning and expression characterization of ApoC-I in the orange-spotted grouper. Fish Physiol Biochem. doi:10.1007/s10695-007-9193-y

  • Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL (2003) Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 23:8084–8091

    Article  PubMed  CAS  Google Scholar 

  • Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, Schacherer F (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Zhou L, Yao B, Li CJ, Gui JF (2007) Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Mol Cell Endocrinol 263:156–172

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Huang ZY, Xiao YX, Li QX (1996) Artificial induction of sex reversa in the grouper, Epinephelus Tauvina. Tropic Oceanol 15:75–79

    Google Scholar 

  • Yao B, Zhou L, Gui JF (2003) Studies on cDNA cloning and temporal and spatial expression of sox3 gene in grouper Epinephelus coioides. High Technol Lett 13:74–81

    CAS  Google Scholar 

  • Yao B, Zhou L, Wang Y, Xia W, Gui JF (2007) Differential expression and dynamic changes of SOX3 during gametogenesis and sex inversion in protogynous hermaphroditic fish. J Exp Zool 307A:207–219

    Article  CAS  Google Scholar 

  • Ye X, Li WS, Lin HR (2005) Polygenic expression of somatostatin in orange-spotted grouper (Epinephelus coioides): molecular cloning and distribution of the mRNAs encoding three somatostatin precursors. Mol Cell Endocrinol 241:62–72

    Article  CAS  Google Scholar 

  • Yeh SL, Kuo CM, Ting YY, Chang CF (2003) Androgens stimulate sex change in protogynous grouper, Epinephelus coioides: spawning performance in sex-changed males. Comp Biochem Physiol C Toxicol Pharmacol 135C:375–382

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2004) Evolution of DMY, a newly emergent male sex-determination gene of medaka fish. Genetics 166:1887–1895

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang W, Zhang L, Zhang L, Zhu T, Tian J, Li X, Lin H (2004a) Two distinct cytochrome P450 aromatases in the orange-spotted grouper (Epinephelus coioides): cDNA cloning and differential mRNA expression. J Steroid Biochem Mol Biol 92:39–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Li X, Zhang Y, Zhang L, Tian J, Ma G (2004b) cDNA cloning and mRNA expression of a FTZ-F1 homologue from the pituitary of the orange-spotted grouper, Epinephelus coioides. J Exp Zool A Comp Exp Biol 301:691–699

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Tian J, Zhang L, Zhang Y, Li X, Lin H (2004c) cDNA sequence and spatio-temporal expression of prolactin in the orange-spotted grouper, Epinephelus coioides. Gen Comp Endocrinol 136:134–142

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang Y, Zhang L, Zhao H, Li X, Huang H, Lin H (2007) The mRNA expression of P450 aromatase, gonadotropin beta-subunits and FTZ-F1 in the orange-spotted grouper (Epinephelus Coioides) during 17alpha-methyltestosterone-induced precocious sex change. Mol Reprod Dev 74:665–673

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Wang Y, Yao B, Li CJ, Ji GD, Gui JF (2005) Molecular cloning and expression pattern of 14 kDa apolipoprotein in orange-spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol 142:432–437

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Yao B, Xia W, Li CJ, Wang Y, Shi YH, Gui JF (2006) EST-based identification of genes expressed in the hypothalamus of male orange-spotted grouper (Epinephelus coioides). Aquaculture 256:129–139

    Article  CAS  Google Scholar 

  • Zhou L, Li CJ, Wang Y, Xia W, Yao B, Jin JY, Gui JF (2007) Identification and characterization of a MBP isoform specific to hypothalamus in orange-spotted grouper (Epinephelus coioides). J Chem Neuroanat 34:47–59

    Article  PubMed  CAS  Google Scholar 

  • Zou JX, Tao YB, Xiang WZ, Hu CQ, Lin JS, Zhang ZR (2003) Histological evidence and mechanism in artificial inducement of sex reversal of the grouper, Epinephelus malabaricus. High Technol Lett 13:81–86

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Major Basic Research Program (2004CB117401), the National 863 High Technology Research Program (grants No 2006AA09Z439), the National Natural Science Foundation of China (grant no. U0631007, 30470935) and Institute of Hydrobiology (075A01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Fang Gui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Gui, JF. Molecular mechanisms underlying sex change in hermaphroditic groupers. Fish Physiol Biochem 36, 181–193 (2010). https://doi.org/10.1007/s10695-008-9219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9219-0

Keywords

Navigation