Skip to main content
Log in

Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Eucalypts are susceptible to a wide range of diseases. One of the most important diseases that affect Eucalyptus plantations worldwide is caused by the rust fungus Puccinia psidii. Here, we provide evidence on the complex genetic control of rust resistance in Eucalyptus inter-specific hybrids, by analyzing a number of full-sib families that display different patterns of segregation for rust resistance. These families are totally unrelated to those previously used in other inheritance studies of rust resistance. By using a full genome scan with 114 genetic markers (microsatellites and expressed sequence tag derived microsatellites) we also corroborated the existence and segregation of a resistance locus, explaining 11.5% of the phenotypic variation, on linkage group 3, corresponding to Ppr1. This find represents an additional validation of this locus in totally unrelated pedigree. We have also detected significant additive × additive digenic interactions with LOD >10.0 on several linkage groups. The additive and epistatic QTLs identified explain between 29.8 and 44.8% of the phenotypic variability for rust resistance. The recognition that both additive and non-additive genetic variation (epistasis) are important contributors to rust resistance in eucalypts reveals the complexity of this host-pathogen interaction and helps explain the success that breeding has achieved by selecting rust-resistant clones, where all the additive and non-additive effects are readily captured. The positioning of epistatic QTLs also provides starting points to look for the underlying genes or genomic regions controlling this phenotype on the upcoming E. grandis genome sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alves AA, Guimarães LMS, Chaves ARM, DaMatta FM, Alfenas AC (2011) Leaf gas exchange and chlorophyll a fluorescence of Eucalyptus urophylla in response to Puccinia psidii infection. Acta Physiol Plantarum. doi:10.1007/s11738-011-0722-z

  • Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22:190–200

    Article  PubMed  CAS  Google Scholar 

  • Brondani RPV, Grattapaglia D (2001) Cost-effective method to synthesize a fluorescent internal DNA standard for automated fragment sizing. Biotechniques 31:793–800

    PubMed  CAS  Google Scholar 

  • Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:16

    Article  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Cervera MT, Gusmao J, Steenackers M, J Peleman VS (1996) Identification of AFLP markers for resistance against Melampsora larici populina in Populus. Theor Appl Genet 93:733–737

    Article  CAS  Google Scholar 

  • Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825

    Article  Google Scholar 

  • Cruz CD (1998) Programa GENES: Aplicativo Computacional em Estatística Aplicada à Genética (GENES—Software for Experimental Statistics in Genetics). Genet Mol Biol 21:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47571998000100022&lng=pt. doi:10.1590/S1415-47571998000100022

  • Devey ME, Delfino-Mix A, Kinloch BB, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar. Proc Natl Acad Sci USA 92:2066–2070

    Article  PubMed  CAS  Google Scholar 

  • Dowkiw A, Bastien C (2004) Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici populina leaf rust in hybrid poplars: strain specificity, field expression, combined effects, and relationship with a defeated qualitative resistance gene. Phytopathology 94:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Faria DA, Mamani EM, Pappas MR, Pappas GJ, Grattapaglia DA (2010) Selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of Eucalyptus. J Hered 101:512–520

    Article  PubMed  CAS  Google Scholar 

  • Faria DA, Mamani EMC, Pappas GJ, Grattapaglia D (2011) Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet Genomes 7:63–77

    Article  Google Scholar 

  • Freeman JS, Potts BM, Vaillancourt RE (2008) Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics 178:563–571

    Article  PubMed  Google Scholar 

  • Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy a review. Australas Plant Pathol 36:1–16

    Article  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross—mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Holland JB (2001) Epistasis and plant breeding. In: Janick J (ed) Plant breeding reviews, vol 27. Wiley, New York, pp 27–94

    Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127

    Article  PubMed  CAS  Google Scholar 

  • Jubault M, Lariagon C, Simon M, Delourme R, Manzanares-Dauleux MJ (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis thaliana. Theor Appl Genet 117:191–202

    Article  PubMed  CAS  Google Scholar 

  • Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D (2003a) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–180

    Article  PubMed  CAS  Google Scholar 

  • Junghans DT, Alfenas AC, Maffia LA (2003b) Escala de Notas para a quantificação da ferrugem do eucalipto. Fitopatologia Brasileira 25:382–390

    Google Scholar 

  • Kayihan G, Huber DA, Morse AM, White TL, Davis JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    Article  PubMed  Google Scholar 

  • Kinloch BB, Sniezko RA, Barnes GD, Greathouse TE (1999) A major gene for resistance to white pine blister rust in western white pine from the Western Cascade range. Phytopathology 89:861–867

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre F, Goué-Mourier MC, Faivre-Rampant P, Villar M (1998) A single resistance gene cluster controls incompatibility and partial resistance to various Melampsora larici populina races in hybrid poplar. Phytopathology 88:156–163

    Article  PubMed  Google Scholar 

  • Li H, Amerson H, Li B (2006) Genetic models of host-pathogen gene interactions based on inoculation of loblolly pine seedlings with the fusiform rust fungus. New For 31:245–252

    Article  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Li HH, Ribaut JM, Li ZL, Wang JK (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Liu J, Ekramoddoullah AKM (2009) Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 52:77–88

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ekramoddoullah AKM, Hunt RS, Zamani A (2006) Identification and characterization of random amplified polymorphic DNA markers linked to a major gene (Cr2) for resistance to Cronartium ribicola in Pinus monticola. Phytopathology 96:395–399

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Mamani EMC, Bueno NW, Faria DA, Guimarães LMS, Lau D, Alfenas AC, Grattapaglia D (2010) Positioning of the major locus for Puccinia psidii rust resistance (Ppr1) on the reference linkage map for Eucalyptus and validation across unrelated pedigrees. Tree Genet Genomes 6:953–962

    Article  Google Scholar 

  • Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Aribopsis thaliana. Mol Biol Evol 22:2444–2456

    Article  PubMed  CAS  Google Scholar 

  • Newcombe G (1998) A review of exapted resistance to diseases of Populus. European Journal of Forest Pathology 28:209–216

    Article  Google Scholar 

  • Newcombe G, Bradshaw HD, Chastagner GA, Stettler RF (1996) A major gene for resistance to Melampsora medusae f.sp. deltoidae in a hybrid poplar pedigree. Phytopathology 86:87–94

    Article  CAS  Google Scholar 

  • Ruiz RAR, Alfenas AC, Ferreira FA, Vale FXR (1989) Influência da temperatura, do tempo molhamento foliar, fotoperíodo e da intensidade de luz sobre a infecção de Puccinia psidii em eucalipto. Fitopatologia Brasileira 14:55–64

    Google Scholar 

  • Thamarus KA, Groom K, Murrell J, Byrne M, Moran GF (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theor Appl Genet 104:379–387

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L, Schmid-Hempel P (2008) The genetic architecture of susceptibility to parasites. BMC Evol Biol 8:187

    Article  PubMed  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic effects for SCN resistance in PI437654. Theor Appl Genet 118:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Xavier AA, Alfenas AC, Matsuoka K, Hodges CS (2001) Infection of resistant and susceptible Eucalyptus grandis genotypes by urediniospores of Puccinia psidii. Australas Plant Pathol 30:277–281

    Article  Google Scholar 

  • Zauza EAV, Couto MMF, Maffia LA, Alfenas AC (2008) Efficacy of systemic fungicides in controlling Eucalyptus rust. Revista Arvore 32:829–835

    Article  CAS  Google Scholar 

  • Zauza EAV, Alfenas AC, Old KM, Couto MMF, Graça RN, Maffia LA (2010) Myrtaceae species resistance to rust caused by Puccinia psidii. Australas Plant Pathol 39:406–411

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPEMIG, with a research grant, and by the Brazilian National Research Council, CNPq, with a MSc fellowship to AAA, a post-doc fellowship to LMSG and a research fellowship to ACA, SHB and DG. We are in debt with Ricardo Martins, Guilherme Christo and Marisângela dos Santos for their assistance during the experiments. We also wish to thank the anonymous reviewers for the detailed revision of the manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Acelino Couto Alfenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, A.A., Rosado, C.C.G., Faria, D.A. et al. Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183, 27–38 (2012). https://doi.org/10.1007/s10681-011-0455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0455-5

Keywords

Navigation