Skip to main content
Log in

Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fiber yield and yield components – including lint index (LI), seed index (SI), lint yield (LY), seed cotton yield (SCY) and number of seeds per boll (NSPB) – were investigated on the farm of Huazhong Agricultural University in a population of 69 F2 individuals and corresponding F2:3 families derived from a cross between high-fiber-yield Gossypium hirsutum CV Handan 208 and a low-fiber-yield Gossypium barbadense CV Pima 90. On the basis of the genetic map constructed previously from the same population by Lin et al. (Plant Breed., 2005), quantitative trait locus (QTL) analysis was performed with the software QTL Cartographer V2.0 using composite interval mapping method (LOD ≥ 3.0). A total of 21 QTLs were identified, which were located in 15 linkage groups. The number of QTLs per trait ranged from one to seven. Of these QTLs detected, one affecting LI explained 24.3% of phenotypic variation (PV), five influencing SI explained 16.15–39.21% of PV, seven controlling LY explained 13.01–28.35% of PV, and two controlling SCY explained 22.76 and 39.97% of PV, respectively. Simultaneously, the detected six QTLs for NSPB were located on five linkage groups, which individually explained 28.01–38.32% of the total phenotypic variation. The results would give breeders further insight into the genetic basis of fiber yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrhman, S.H. & A.H. Abdalla, 1995. Investigations of character association in some upland cotton (Gossypium hirsutum L.) genotypes. I. Yield and yield components. Univ of Khartoum J Agric Sci 3: 1–12.

    Google Scholar 

  • Adams, K.L., R. Cronn, R. Percifield & J.F. Wendel, 2003. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100: 4649–4654.

    Article  PubMed  Google Scholar 

  • Basten, C.J., B.S. Weir & Z.B. Zeng, 1994. Zmap – a QTL Cartographer. In: Smith et al. (Eds.), Proc 5th World Congress on Genetics Applied to Livestock Production, Vol. 2, Computing Strategies and Software, pp. 65–66. University of Guelph, Guelph, Ontario, Canada.

  • Basten, C.J., B.S. Weir & Z.B. Zeng, 1997. QTL Cartographer: Reference manual and tutorial for QTL mapping. Department Of Statistics, North Carolina State University, Raleigh.

    Google Scholar 

  • Beavis, W.D., 1998. QTL analyses: Power, precision and accuracy. In: A.H. Paterson (Ed.), Molecular Dissection of Complex Traits, pp. 145–162, CRC Press, Boca Raton.

    Google Scholar 

  • Charmet, G., 2000. Power and accuracy of QTL detection: Simulation studies of one-QTL models. Agronomie 20: 309–323.

    Article  Google Scholar 

  • Cheatham, C.L., J.N. Jenkins, J.C. McCarty, Jr., C.E. Watson & J.X. Wu, 2003. Genetic variances and combining ability of crosses of American cultivars, Australian cultivars, and wild cottons. J Cotton Sci 7: 16–22.

    Google Scholar 

  • Frey, K.J. & T. Homer, 1957. Heritability in standard units. Agron J 49: 59–62.

    Google Scholar 

  • Jiang, C.X., R.J. Wright, K.M. El-Zik & A.H. Paterson, 1998. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95: 4419–4424.

    Article  PubMed  Google Scholar 

  • Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.

    Google Scholar 

  • Lacape, J.M., T.B. Nguyen, S. Thibivilliers, B. Bojinov, B. Courtois, R.G. Cantrell, B. Burr & B. Hau, 2003. A combined RFLP–SSR–AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46: 612–626.

    Article  PubMed  Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & I. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  Google Scholar 

  • Li, G. & C.F. Quiros, 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet 103: 455–461.

    Article  Google Scholar 

  • Lin, Z.X., D.H. He, X.L. Zhang, Y.C. Nie, X.P. Guo, C.D. Feng & J.McD. Stewart, 2005. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed 124: 180–187.

    Article  Google Scholar 

  • Lincoln, S., M. Daly & E.S. Lander, 1992. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 2nd Edition, Whitehead Institute, Cambridge, MA.

  • Mei, M., N.H. Syed, W. Gao, P.M. Thaxton, C.W. Smith, D.M. Stelly & Z.J. Chen, 2004. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108: 280–291.

    Article  PubMed  Google Scholar 

  • Meredith, W.R., 2000. Cotton yield progress – why has it reached a plateau? Better Crops 84: 6–9.

    Google Scholar 

  • Nguyen, T.B., M. Giband, P. Brottier, A.M. Risterucci & J.M. Lacape, 2004. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109: 167–175.

    Article  PubMed  Google Scholar 

  • Paterson, A.H., Y. Saranga, M. Menz, C.X. Jiang & R.J. Wright, 2003. QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106: 384–396.

    PubMed  Google Scholar 

  • Reinisch, A.J., J.M. Dong, C.L. Brubaker, D.M. Stelly, J.F. Wendel & A.H. Paterson, 1994. A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 829–847.

    PubMed  Google Scholar 

  • Rong, J., C. Abbey, J.E. Bowers, C.L. Brubaker, C. Chang, P.W. Chee, T.A. Delmonte, X. Ding, J.J. Garza, B.S. Marler, C. Park, G.J. Pierce, K.M. Rainey, V.K. Rastogi, S.R. Schulze, N.L. Trolinder, J.F. Wendel, T.A. Wilkins, T.D. Williams-Coplin, R.A. Wing, R.J. Wright, X. Zhao, L. Zhu & A.H. Paterson, 2004. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166: 389–417.

    Article  PubMed  Google Scholar 

  • Saranga, Y., M. Menz, C.X. Jiang, R.J. Wright, D. Yakir & A.H. Paterson, 2001. Genomic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11: 1988–1995.

    PubMed  Google Scholar 

  • Saranga, Y., C.X. Jiang, R.J. Wright, D. Yakir & A.H. Paterson, 2004. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27: 263–277.

    Article  Google Scholar 

  • SAS Institute Inc., 1999. SAS user's Guide, Release 8.01 Edition. SAS Institute, Cary, NC.

  • Senchina, D.S., I. Alvarez, R.C. Cronn, B. Liu, J. Rong, R.D. Noyes, A.H. Paterson, R.A. Wing, T.A. Wilkins & J.F. Wendel, 2003. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20: 633–643.

    Article  PubMed  Google Scholar 

  • Shappley, Z.W., 1996a. Construction of RFLP linkage groups and mapping of quantitative trait loci in upland cotton (Gossypium hirsutum L.). Ph.D. Dissertation Mississippi State University (dissertation abstract AAG9711761).

  • Shappley, Z.W., J.N. Jenkins, C.E. Watson, Jr., A.L. Kahler & W.R. Meredith, Jr., 1996b. Establishment of molecular markers and linkage groups in two F2 populations of upland cotton. Theor Appl Genet 92: 915–919.

    Article  Google Scholar 

  • Shappley, Z.W., J.N. Jenkins, J. Zhu & J.C. McCarty, Jr., 1998a. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci 2: 153–163.

    Google Scholar 

  • Shappley, Z.W., J.N. Jenkins, W.R. Meredith & J.C. McCarty, Jr., 1998b. An RFLP linkage map of upland cotton (Gossypium hirsutum L.). Theor Appl Genet 97: 756–761.

    Article  Google Scholar 

  • Stuber, C.W., M.D. Edwards & J.F. Wendel, 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27: 639–648.

    Google Scholar 

  • Tang, B., J.N. Jenkins, C.E. Watson, J.C. McCarty, Jr. & R.G. Creech, 1996. Evaluation of genetic variances, heritabilities, and correlations for yield and fiber traits among cotton F2 hybrid population. Euphytica 91: 315–322.

    Article  Google Scholar 

  • Ulloa, M. & W.R. Meredith, Jr., 2000. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4: 161–170.

    Google Scholar 

  • Wendel, J.F., 1989. New world cottons contain old world cytoplasm. Proc Natl Acad Sci USA 86: 4132–4136.

    Google Scholar 

  • Wendel, J.F. & R.C. Cronn, 2003. Polyploidy and the evolutionary history of cotton. Adv Agron 78: 139–186.

    Google Scholar 

  • Zeng, Z.B., 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA. 90: 10972–10976.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, DH., Lin, ZX., Zhang, XL. et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144, 141–149 (2005). https://doi.org/10.1007/s10681-005-5297-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-5297-6

Key Words

Navigation